We have now brought one marrative to the period of the first mational census, and our task has been, as it were, over a tangled and ungannered field. With the limits as to length, searce more than a bare recital of facts was admissible. We have been careful to omit nothing within the range of our acquirement which seomed usentin, the anthority for the statements being given in every instance. The matter presented has been laboriousl: gleaned from diverse, obscure, and mpublished sources, in some instances from manusaripts of which bul single copies are in existence. The thorough and extended iurestigation already made secures a basis of reference that will be helpful to those who, in future years, may be able to extend the work to greater and more minute compheteness. Tobacco has ever been the staple product of Virginia (the first settled of the English colonies in America) and its uhief source of wealth. It is now one of the most prolific factors in the revenue of the genemal government. As has been demonstrated, it once permeated the entire fabric of society in Virginia. It directed the colonial laws, which consisted chiefly of regulations for its culture, quality, and sale. An attempt to make it yield a revenuo for the sustenance of the postal service led to an expression of defiance anterior to the rosistance to the stanp act by more than half a century. For two hundred and fifty years it was the principal enrency of the colony and the basis of all values, and from its paramount. profit its culture engrossed the attention ol the colonists, aud thas subordinated the entire remaining agricultural and manufacturing interests of Virginia.

Upon a careful examination of the whole subject, there is observed a kind of periodical fluctration in the annual shipment of tobacco to foreign combries, as it appears that, when our exports of leaf tobacco for two or three successive years much exceed $100,000,000$ pounds, for some succeeding years they are proportionately reduced below that standard. It is evident that the revolutionary war gave a check to the exportation of leaf tobacco from which it has never recovered; until that period the annual average exportations incroased regularly and steadily. In other words, for the thirty-one years immediately preceding the Revolution our export of leaf tobacco annually increased, and for the sixty years since that period it has remained stationary, except when interrupted by wars or other commercial embarrassments. The reason is apparent. Before the Revolution all Europe depended on us for supplies of the article; but being cat off by the war, Europeans turned their attention to growing tobaceo for themselves, and have continued to cultivate it all over the continent, while they have checked its consumption by the onerous taxation above indicated. (a)

Acceording to the diary of Colonel William Cabell, senior, of Union Hill, tobacco in 1794 was worth in Richmond, Virginia, from $20 s$. to $24 s$. per hundred-weight. It appears also, from the stme anthority, that "Swan creek" tobacco of his section commonly commanded $1 s$. per hundred-weight more than that grown in other sections of Virginia.

According to the diary of Thomas Rutherford, an old and highly-respected merchant of Richmond, shipments of tobacco before the commencement of the war, and until 1814, in which he was interested, sold at that time in Dublin for $15 d$. per pound.

It will be remembered, in comparison of the tobacco prodaction of recent jears and the tobacco production of canly jears, that the Virginia of the early days included West Virginia, now erected into a separate state.

Ohapter XVII.

OULTURE AND CURING OF TOBACCO IN WES'I VIRGINTA.

Tobacco has been raised in West Virgivia to a limited extent for more than a half centmry, and in 1860 the whole product of the state was only $2,046,452$ pounds, many things laving heretofore contributed to prevent large plantings of tobacco, the most important of which was the lack of facilities for transportation. This industry is growing rapidly of later years, as cheaper and quicker means of reaching market are afforded and the capabilities of the lands are becoming better known.

Formerly the bulk of the crop was produced in a few counties if the Great Kanawha valley and on the Ohio river, and was sold principally in Louisville and Baltimore; but Cincinsati is now the market for the greater part of this crop, which is mainly dark shipping tobacco.

Before 1855, and for some time afterward, the product of what is now West Virginia was all classed as "Western", and it has not yet received any distinctive name, the bright tobaccos being elassed with the Virginia, and the dark with the Ohio crop.

QUALITY OF TOBACCO.

The tobacco produced in West Virginia may be divided into Dark Shipping, Red and Spangled, Bright Yellow, and White Burley, some counties producing two or more of these; bat in the following description of the districts each county is classed according to the predominant quality of its crop, Tyler county, for instance, producing some of all four grades, and being classed in the Red and Spangled district.

Dark Shipping is produced in Kanawha, Putnam, and Mason counties, in the Great Kanawha valley; also in Jackson, Cabell, Wayne, and Wood counties, lying along the Ohio river.

Red and Spangled.-There are many grades of this tobacco produced in Boone, Calhoun, Clay, Dockdridge, Gilmer, Greenbrier, Harrison, Lewis, Roane, Ritchie, Tyler, Upshur, Wetzel, and Wirt counties.

Briget Yellow is the prevailing quality in Fayette, Raleigh, Monroe, Mercer, and Summers.
Whife Bunley.-This new variety has no fixed locality, but is principally grown in the Ohio river comnties.
The tobacco produced in Kanawha, Putnam, and Mason counties is darker, heavier, and richer than the same type grown aloug the Ohio river, and might properly be classed separately. It more nearly resembles the dark Shipping of eastern Virginia than the product of the Ohio valley, which latter more nearly resembles the dark tobaceo of eastern Ohio. This difference is partly the result of soil influences and partly the result of management. In the Kanawha district the leaves are cured on the stalks; in the Ohio river counties the bulk of the product is pulled from the stalks, and only the leaves are housed. The Kanawha tobacco is riper when cut, and is tougler and more waxy; the product of the river counties is thinner, more tender, and brighter in color. There are usually four grades of the dark tobacco: long leaf, short leaf, ground leaves, and tips; but in the bestassorted crops there are five grades, two of lugs, one of tips, and two of leaf.

Of the red and spangled tobaceo there are numerons grades, there being several shades of red, rumiug to black; several varieties of spangled, from a bright mottled fellow to a dark mahogany; colored sorts, from orange to cherry red; and some of a smooth yellow. All these are classed together, for convenience of illustration, and because they are all produced more or less in the same area, and sometimes on the same farm. Poculiarities of soil, different varieties, and varying modes of handling, curing, and management, produce the different colors.

Of the five counties classed in the Bright Yellow district, only one (Fayette) makes the prodnction of this quality a specialty.

In several counties in the Red and Spangled district very good brights are produced by planters who lave discarded the old plan of enring with open wood fires and have substituted therefor charcoal or flues. In Tayette comenty the production of fine yellow tobacco, begun twenty-five years ago by an immigrant from Amherst county, Virginia, has rapidly extended, the country from Cañon Hill to Oak Hill presenting a scene of thrift, enterprise, and prosperity-a suggestive picture of what skill and energy can accomplish in a rugged, and in many respects uninviting, region.

GEOLOGY AND SOMS.

West Virginia is in the Carboniferons Limestone and Great Coal groups, the counties of Mercer, Momoe, Summers, and Greenbrier being principally in the Carboniferous Limestone, while all the other tobaceo counties are in the Great Coal group.

The soils of the Carboniferous Limestone group are varied: Limestones, sandstones, and slates are the prevailing rocks. The limestones are magnesian, siliceous, and carbonate. The sandstones and slates indicate the poorer soils.

The soils of the Great Coal group, except the alluvials on the rivers and creeks, are apparently very much alike, but are really wolike in constitution and character. Those of a dark color, approaching to red, where reddish sandstones occur, are generally the most fertile; the slaty and shaly mountain slopes the poorest; butt with proper skill and management these latter soils produce the finest tobacco. The alluvials of the Great Kanawha and other rivers are generally dark, sandy loams, and are the most fertile of all. These produce the best shipping and Burley tobaceo, those with most clay being best adapted for the first, and the more sandy soils for the latter.

The limestone soils are easy of tillage, retentive, not easily washed, and are susceptible of great improvement, and offer suitable lands for the production of the Burley type.

The soils of the Coal group, and those of the lower shale and sandstone formation, are not considered easy of tillage; for, aside from their closeness or adhesiveness, they are generally so hilly and steep as to make cultivation difficult and laborions to man and beast. They are not easily washed, except on some of the sandy ridges. The subsoil is generally porous, seldom soggy, and crops are rarely injured by excess of water in the soil, the natural drainage being perfect in much of the cultivated area. There are extensive areas of fresh lands awaiting development, and, from present indications, tobacco will be the first crop to utilize them.

OLIMATE.

Owing to the rugged and elerated character of three-fourths of the territory of West Virginia, the temperature, Jike that of all mountain regions, is variable, the isothermal lines making sharp and crooked curves, to correspond with elevation.

The Statistical Atlas of the United States, temperature chart, Plate VII, indicates that while a narrow belt of the most elevated portion of the state is in the zone of 48° to 52°, yet the main area is in the zone of 52° to 56°, and while there occur occasional extremes of low temperature, there are seldom seasons of extreme heat. The days are often hot in summer, but the nights are cool, affording just the most needful conditions to the tobacco-plant.

Early and late frosts, which may damage the young plants in the seed-bed or nip them before harvest in the fall, are most to be guarded against. The tobacco-plant, when quite young, will bear a low temperature-eren
below the freezing point-and live. Sheltered spots on southern slopes and hillsides and hot-beds will furnish the needed supply of plants, and by topping low they may ripen and be cut before the usual time for frost. Fertilizers expedite growth and maturity.

The average tunual rainfall along the central zone is about 40 inches, and, as usually distributed over the tobacco belt, is admirably suited to this crop: gentle in spring, more in the growing season of early summer, and less in August and September, allowing the plant to ripen when excessive rains would do harm.

The lands everywhere in this region are richer than they seem, and produce crops beyond the expectation of those inexperienced in their capabilities. Green fields may be seen upon steep declivities and on rugged escarpments, even to the very tops of the mountains, proving that the soil on these mparently mufarombe and almost inaccessible localities may be made to yield abundantly.

West Virginia enjoys comparative immunity from storms, and the consequent danage therefiom, and the tobacco crops are rarely injured in the sheltered positions of the larger number of the fields, being protected by woods and hills from winds or driving rain-storms.

VARIETIES OF TOBACCO.

In the Kanawha valley the varieties mostly grown are Orinoco, Frederick, Pryor, Brittle Stem (Little Orinoco of Virginia), White Stem, and White Burley, one or the other being a favorite in difforent neighborhoods, according to the preference of the planters, or because of supposed adaptation to certain soils. The Burley has been recently introduced, and some farmers are pleased with it, while others are not. This variety is gradually growing into favor wherever the soil is suited to its proper development, and bids fair to succeed in the vailey of the Kanawha, as well as in the Ohio river connties, where the soil is mellow and rich. Along the Ohio river the varieties in use are much the same as those grown in middle Virginia, with a sprinkling of Kentnoky and Ohio names. Not much attention seems to be given to the selection of varieties, nor is there much care taken to keep desirable ones pure. As many as three varietics are sometimes seen growing in the same field promiscuonsly, showing that the planter had sown mixed seed, or had drawn his plants carelessly from beds sown with different varieties. Tn the Red and Spangled district there seem to be no tixed varieties. In Tyler county the Orinocos, White Stem, and Maryland Thickset are found. The "Yellow Spangled" is only another uane for the Orinoco, and its product sells well-next in price to the bright yellow and a first-class Burley. The Burley, however, has not been successfully grown on the gray uplands of this state, such as produce a fine spangled or bright yellow leaf.

On old, rich, or highly-manured lands the growth is rank and the stalks and stems large, the leaves coarse, brittle, and full of sap when ripe, and consequently cure dark in color. On xaw or fresh land, or on old land of medium fertility withont manure, the plants are smaller, the texture of the leaves finer, the leaves ripen with less sap) and of a yellower color on the hill, and cure brighter and with less body. Fresh land produces the finest tobaceo, and that best suited for manufacturing purposes.

During the past ten years there has been a marked change from the dark to the colored types, the latter, briaging better prices, having increased in production, while the former has diminished. This is especially the case in the section south of the Chesapeake and Ohio railway, where most of the crops are now cured with charcoal, a fow plauters using flues, and the quality has greatly improved, due mainly to the better methods of curing. The same may be said of the counties growing the White Burley. The product is improved by the introduction of this variety, and the mode of curing it by air, without fire, is the cheapest of all. Where the crops are cured with open wood fires, there has been no improvement in quality, and lower prices have lessended the product.

In Mercer, Monroe, Fajette, and Raleigh counties the improvement in product, consequent upon the better modes of curing, has been move than a hundred per cent.

TEE USE OF FERTILIZERS AND PRESERVATION OF TOBACOO SOILS.

Neither commercial fertilizers nor domestic manures are much used on the tobacco crop of this state, except in the Yellow district. In this district commercial manures have proved of great benefit, and their uso is increasing. These are usually applied in the hill, as this is found to produce the greatest good at the least cost. These fertilizers increase the yield, hasten ripening, and improve the color; but opinions differ here, as elsewhere, whether or not there is any improvement in quality, different effects of fertilizers upon the quality of the cured product being attributed to the differing character of soils and the quantities of fertilizers used. Heavy applications contribute to the production of large, coarse leaves, particularly on some soils, and the product is unfitted for the finest types; but where applied in limited quantity, and on suitable soils, early growth and maturity without excessive stimulation is the result, and the product is increased withont iujury to the quality.

Usually two, and sometimes three, crops of tobacco are grown on newly cleared lands. The second crop is, in most instances, the best-larger in yield and of about the same quality as the first; and the third, when tho laud is not too poor, pays about as well as the first. Planted upon the same land for a sories of years, without the application of manures in sufficient quantity, there is a heary decrease of yield and a very marked falling off in
quality, until the product ceases to be desirable to purchasers or profitable to the grower. In some counties there has been a decided increase in the product, the result of better cultivation, as well as of the extended use of fertilizers; in others, a decrase must be noted, due to exhaustion of the soils, inferior cultivation, and the ne glect of manures.

On many farms, tobacco occupies the same fields for only two years after clearing, the land being then deroted to other uses, and new clearings being made for tobacco. No system of rotation, in comection with green-manuxing or other fertilizing, for soil recuperation, is generally adopted; but a few of the more careful planters are beginning to follow tobacen with grass, to remain some years.

SEED-BEDS.

The general practice is to burn from January to March, and to sow the seed as soon as the beds are prepared.

PREPARATION OF TOBACCO LAND AND CULITVATION.

New land is coltered or plowed, harrowed or shoveled over, marked, and hilled, the implements used varying with the condition of the "clearing"; but old land is broken usually with a two-horse turn-plow, harrowed or shoveled, furrowed off and hilled. The preparation is various-thorongh by some; by the greater number, imperfect and in a slovenly manner.

The usual distance apart for the plants is 3 by 3 feet; for the larger varieties, upon stronger soils, 32 feet each way. Planting is begun about the middle of May and completed by the first of July. No system of cultivation is adopted, even in any given neighborhood. Every farmer follows his own mode, as inclination or necessity prompts.

TOPPING AND PRIMTNG TOBACCO.

Topping commences as soon as the plants are large cnough, some farmers waiting for the appearance of the "buttons", and others topping as soon as eight or ten leaves of good size are formed, the darls grades being topped to eight or ten leares, the jellow to ten or twelve, and the Burley to twelve or sixteen.

In some localities all the tobacco is primed; in others no priming is done; and there is a growing disposition not to prime, especially where the Burley is grown.

OUTTING, HOUSING, AND OURING OF TOBACCO.

Most planters in West Virginia prefer to cut tobacco when fully ripe, so that the plants are not considered ready for harvest until thirty on forty days after topping. If, because of late planting, fhests threaten before the crop is ripe, the tobacco is cut before being fully matured. In some sections of the state the leaves are stripped from the stalk and are strung upon wires or twine to be emred; but for much the larger portion of the crop the stalles are split and the plants are stradded upon sticks, six to eight and sometimes eight to ten plants to the stick, according to size and type-a less number for the Burley and yellow, and more for the dark grades.

Nearly all the tobacco-houses are built of logs, are usually 20 feot square, with from four to five tiers in the body of the barn, and are covered with boards or shingles, the spaces between the logs being usually chinked and daubod with mud. The arerage capacity of these houses is from 4,000 to 6,000 plants. In the Yellow district the sticks of hung tobacco are placed well apart on the tiers. Where the curing is done with open wood fires the -sticiss can be placed closer together. The cost of an ordinary \log barn, 20 feet square, 10 to 20 feet high, and covered with boards, is from $\$ 40$ to $\$ 70$.

The usual time of cutting is from September 1 to October 1. A few farmers scaffold tobacco, but the majority house it as soon as it is cut. A considerable part of the product of this state is cured with open wood fires-a method which makes a low-priced tobaceo; but no tobacco grown in the state has sufficient richuess aud body to be properly cured in this way.

The Burley is air-cured, makes a salable product, and is growing in favor with manufacturers. This variety, as indeed all others intended for air-curing, should be cut dry, and either placed upon scaffolds or luang well apart in the house, not crowded upon the sticks nor on the tiers; and especial care is needed to maintain a free circulation of air to prevent pole-sweat, or house-burn as it is sometimes called. Some planters ruined their crops of Burley by failing to give room enough and by fining with wood. In Fayette and in Raleigh charcoal is principally used in curing brights, and the method of yellowing, fixing the color, and drying out the tobacco is substantially the same as practiced in Virginia and North Carolina. Flues are being introduced, to take the place of coal, and, where properly constructed, give satisfaction.

Hall's method of curing bright yellow, as practiced in Mercer county, is as follows: After housing, raise the heat to $100^{\circ} \mathrm{F}$., to wilt the tobacco; then let it cool down. The following day raise the heat to 000 and cool down as before; repeat this every six hours until the tobacco is lalf yellowed; then raise the heat slowly to 1200 , to dry the leaf. After the sweat is dried u p raise the heat to 190°, and keep it there until stems and stalks are finly cured. Very fine tobacco is cured by this process. The directions above given can serve only as a guide, the condition of the tobaceo when housed, the character of the house, the season, and the weather being all so variable as to make
it impossible to lay down fixed rules for the curing of any desired color or quality. Skill is the reward of practice and close observation, and a certain amount of technical skill is absolutely necessary to success in curing fine tobaceo of any type.

Some persons fix the color by burning sulphur, bran, and alum under the tobacco at what is considered the proper time ; but this is of doubtfin propriety or advantage. The heat, if properly regulated, will fix the color, and there is no disagreeable flavor, such as is often imparted by the fumes of sulphur, ete.

In the Yellow district it is the common practice to bulk down tobacco as soon as it is thoroughly cured, and some crowd the sticks together in the barn to preserve the color. In the Dank district it is left to lang as it was cured until a stripping season comes, when it is taken down, stripped, assorted, and tied in bundles or hands.

Very little damage to tobacco while hanging in the barns is reported. Mold sometimes injures air-cured tobaceo, caused by long continued damp, warm weather, and sometimes late-cut tobacco is damaged by freezing in the harns before the sap is thoroughly dried out.

After being stripped, the tobacco is either bulked down, to be sold in winter order to comntry dealers, or is hung up, to be properly ordered for bullking or prizing. If bulked, it is permitted to remain from thirts to forty-five days to sweeten before being prized.

Most planters sell in prized packages; some sell loose to dealers. The wooden lever is generally used for prizing, but a few screws are found here and there. Ohio river plantexs ship to Oincinuati, all the Burley going there. Farmers within reach of the Baltimore and Ohio railway ship to Baltimore, and those near the line of the Chesapeake and Ohio find a market in Richmond, Virginia. The usual time of selling is from May till August, the larger part of the crop being marketed in June and July. The hogsheads of dark leaf vary in weight from 600 to 800 pounds for leaf to 1,000 and 1,400 pounds for seconds and lugs. Brights are usually packed in tierces weighing from 200 to 500 pounds. '

DISEASES OF TOBACCÓ.

Except on the Kauawha and the Ohio rivers, where red-fire, speck, and hollow-stalls sometimes prevail to a limited extent, the tobacco of West Virginia is remarkably free from disease, and many of the interior, comnties report no disease.

COST OF RAISING TOBACCO, ETC.

In the region producing the dark types the price of the best tobacco lands raries from $\$ 15$ to $\$ 30$ per acre, and these produce, without maunes, from 800 to 1,000 pounds of tobacco per acre. Inferior soils, producing from 500 to 600 pounds, are worth from $\$ 8$ to $\$ 12$ per acre. In the Yellow district, the best lands, producing from 600 to 000 pounds per acre, are worth about $\$ 10$, inferior soils, producing from 500 to 700 pounds, being valued at from $\$ 4$ to $\$ 7$ per acre.

The approximate cost of raising tobacco in the Dark and Burley districts is estimated at $\$ 525$ per hundred pounds; in the Yellow district, \$7 75. These are approximations only, not one farmer in a hundred being able to make an accurate statement of the cost of production.

The average wages paid for field-hands is: for men, 50 cents per day, $\$ 10$ per montl, and from $\$ 100$ to $\$ 120$ per year, with board, and sometimes houses for their families, tobacco laborers being paid as common field-hands. Skilled eurers and packers command better wages, proportioned to their special abilities.

Land is rarely rented by the acre. Where worked on shares, the cropper gets two-thirds and the landlord, one-third-the latter furnishing ouly the land, barn, and barn fixtures. Where the land is to be newly cleared, the cropper gets a larger percentage of the product.

The number of acres planted to the hand varies widely, according to locality and peculiar circumstances. Where tobacco is one of several crops grown upon the farm, from 3 to 4 acres are planted for each fall hand; Where this is the main crop, or made a specialty, 5 to 6 acres per hand is not accounted too much. Extra labor must be emplojed, however, at certain times; for no one man can worm, sucker, cut, house, and cure 6 acres of tobaceo without help.

Co-operative labor to a certain extent can produce tobacco more cheaply, and doubtless of better quality, than individual effort upon a Iimited area. When the number of workers is too small the work is performed at a disadvantage, and the planter is forced to rely upon assistance, which is not always obtained when needed, an 1 not always skillful or reliable. On the other hand, when the working force is a large one, only the most careful and energetic supervision, with judicions management, will secure profitable results.

INSECT ENEMIES OF TOBACCO.

In West Virginia little damage by the cut-worm is reported, which is accounted for by the fact that most of the land cropied in tobacco is newly cleared.

The tobacco of the Ohio river counties bears evidence of a multiplicity of horn-worms, but in the interior counties they are not so numerons. The injury to the product along the Ohio, including the cost of hunting and killing the worms, is estimated at 15 per cent. of the entire crop.

Chapter XVIII.

OULTURE AND OURING OF TOBACOO IN WISCONSIN.

A line extending northwest from Milwaukee will nearly mark the limit between the small timber of the openings and the heavily timbered regions of the north, and the same line will almost mark the boundary between the agricultural and the lumbering distriets.

The soils of central Wisconsin are divided, according to their origiu, into drift, sandstone, limestone, and crystalline rock soils, and all partake of the character of the rocks from which they are derived. The Potsdam sandstone, which occupies a large district in central Wisconsin, gives a very poor, thin soil, and even where the material of the drift is of an arenaceous character the soil is often of the same nature.

If the drift material is of a calcareous tund argillaceous character, thongh it may overlie sandstone, the soil is often good, as in the southern part of Adams and the eastern part of Waushara counties. Some for local areas of moderate fertility occur on the Potsdam formations, but they result from the accidental accumulation of other material, and are exceptions to the general rale.

A bed 30 feet thick, which rests above the lowest sandstone, is composed of a clayey or saudy magnesian limestone, called the Mendota limestone, and where the soil has been derived from this, as in portions of Oolumbia county, it is fertile. Upon this is another sandstone, with a thickness of from 30 or 40 feet, to which the name of Madison sandstone has been given. In its disintegration it makes a very poor soil, being nothing more than a ber of loose sand. This occurs in a part of Columbia county. The Lower Magnesian rests upon the Madison sundstone, and gives rise, by its crumbling, to a very fertile, durable soil. This limestone is from 8 to 200 feet in thickness, and is composed largely of siliceous and clayey matter. The elevated prairie belt of northern Dane and eastern Columbia carries this soil, and is one of the most productive regions in the state.

The Saint Peter sandstone rests upon the Lower Magnesian, but it rarely forms the surface rock, and is therefore of no importance as a soil-former. But few areas in central Wisconsin have soils derived from Trenton limestone or from the Galeaa.

The lead region embraces three of the most sonthwesterly counties of the state, viz: Grant, lowa, and La Fayette. In the eastern part of La Fayette county the soil is sandy, owing to the disintegration of the ealcareous saudy shales belonging to the Galena limestones.

South of the principal water-shed of the district the soils rest upon a strong, deep clay. These soils have been derived from the crumbling of the Galena limestones and the Cincinnati shales, and are remarkable for their fertility and strength. In other places, especially north of the water-shed, the soil abounds in flint on the higher points, derived from the Galena limestone.

TIMBER.

Nearly all the northern counties of Wisconsin abound in white pines, balsams, hemlocks, and other conifers. The widely extended prairies of western Illinois reach into several of the southern counties of Wisconsin, and between these prairies and the heavily timbered districts of the north are what are called "oak openings", in which the burr oak (Quercus macrocarpa) is the principal growth. Associated with this burr oak are the white oalk (Q. alba), red oak (Q. rubra), and pin oals (Q. palustris). The chestnut oak (Q. prinus) occurs in the region around Janesville and Edgerton, the very center of the tobacco district.

OLIMATE.

In the southern and thickly-settled portion of the state the mean annual temperature varies from $45^{\circ} .3$, on the shores of lake Michigan, to $46^{\circ} .9$, on the Mississippi river, the average being about 46°.

For the tobacco-growing region around Janesrille, Edgenton, and Madison the following table will give a fair idea of the prevailing meteorological changes:

	Inatitude.	Langituld.	Hoight.	Spring.	Summer.	Autamu.	Winter.	$\begin{aligned} & \text { Annual } \\ & \text { mean. } \end{aligned}$
Edgerton .	42. 88	89.00	1,700	40.17	70. 84	48.42	21.30	46. 88
Janesville	42.41	8 B .00	780	44, 73	70.43	48.25	20.84	$4{ }^{4} .07$
Madison	43. 15	80.94	1,088	43.47	60.11	48. 20	20.84	45.40

The rainfall, including melted snow, averages for this region about 32 inches annually, of which about one-hale falls in May, June, July, and August. The prevailing winds for the spring months are from the northeast; of summer, southwest; of autumn and winter, west. The mean of the prevailing winds for the region of the Mississippi river is sonth; for lake Michigan, northwest. The winters are usually cold, clear, and dry; springs, backward; summers, hot; and autumns, mild and pleasant.

HISTORY OF TOBACOO OULTURE IN WISCONSIN.

Abstract

The census of 1850 reports the entire product of the state at 1,268 pounds. The first attempt to grow tobaceo for market in Wisconsin was made near Madison by Ralph Pomeroy and by J. J. Heistand. There was not much, however, raised up to 1860 , for the census returns show the whole amount grown in the state at that period to have reached only 87,340 pounds. Of this amount Walworth county produced 20,400 pounds, Rock 23,340 pounds, and Dane 8,968 pounds. An impression provailed for many years that tobacco could not be protitably grown in high latitudes, and it was not until the value of the northern-grown leaf as a wrapper for Havana fillers was ascertained that it took a permanent place among the productions of the farm. The occurrence of the civil war, by making tobaco scarce and dear, gave a powerful impetns to its culture, and it was at this period that it began to claim the attention of some of the best farmers in Dane county; but its culture spread slowly, there being much prejudice existing with a large class of farmers against its production, and it was believed that it wonld quickly exhanst the fertility of the soil; that it was a useless product; that it ministered to a depraved appetite; and that the extension of its culture would be an mmixed evil. It gradually increased, hovever, in acreage, so that the census of 1870 showed a production of 960,813 pounds-an increase of just 1000 per cent. in ten years-Dane and Rock counties producing eight-ninths of the whole, the former 220,568 pounds, and the latter 64 ,, 508 pounds. Since that time its cultivation has spread over nearly the whole of Rock county, the southeastern portion of Dane, the eastern part of Greene, and the southwestern corner of Jeffersou. In 1870 the production was very largely increased, and the crop that year, which was chiefly sold in Edgerton, was estimated to be worth $\$ 200,000$, and that of 1871 between $\$ 300,000$ and $\$ 400,000$. Since that period it has formed a staple crop, and the farmers in Dane, Rock, and small portions of the adjoining counties rely upon it with more certainty as a money crop than upon any other staple grown; the production up to 1876 varying from 10,000 to 15,000 cases of about 400 prounds each.

TEDE TOBACOO DISTRIOT OT WISCONSIN.

If one will take a map of Wisconsin and begin about three miles west of Madison, the state capital, on the shore of Iake Mendota, and trace a line nearly south, so as to include the eastern half of the townships of Brooklyn, Albany, and Decatmr, in Greene county, and the northeastern coruer of Spring Grove township, in the same county, and thon curving into Rock county, so as to exclude the southern half of the southern tier of townships in that comnty, passing north of Beloit about two miles, and striking the western limit of Walworth county near Allen's Grove, following the eastern boundary of Rock county north about two thirds of its length, then turning to the northwest, so as to include lake Koshkonong, in Jefferson combty, and from this point trace the line in a northeasterly direction to the very center of Jefferson county, and from the latter pointin a line curving first north as high as Prairie, then southwesterly to the begiming, inclosing within the boundary something over 1,200 square miles, he will outline the limits of the tobacco-growing area of Wisconsin in 1879.

In the tobacco district of Wisconsin the area in 1879 was an increase of 17 per ceut. over that of 1878 , and of about 60 per cent. increase on that of 1877 and 1876 . The yield was greater in 1879 than in 1878 , but less than it was in the two years preceding. The quality of the crop, however, was inferior, having been very much injured by worms-it very rave ocourence-and in some local areas by hailstorms. The crops of 1878, 1877, and 1876 were very sound, and elerated the rank of the Wisconsin crop in the marketis of the country. 'Che main cause of the decrease in yield in the years 1878 and 1879 , as compared with the two years preceding, was the extended culture of Spanish tobaceo, a variety that whays commands a ready sale, but does not yield as much per acre as the larger seed-leaf varieties. The Havana or Spanish varieties are exceedingly delicate in texture, with a peculiar aroma, and probably one-fourth of the whole amount grown in the state, and nearly one-half of the area planted, is of the latter varieties. While the yield does not exceed 1,000 pounds per acre, it sells readily for 11 cents per pound. The seed-leaf varieties, though yielding 1,600 pounds to the acre, do not bring in the local markets over 62 cents through. The readier and earlier sales of the Spanish tobacco make it far less tromblesome to the tobaceo-growers, and it does not meet, with such sharp competition in the markets as the seed-leaf.

Several varieties of the seed-leaf, however, are grown, among them being the Lancaster broad leaf, the Comnecticut broad leaf, and the Vallandigham. The Lancaster broad leaf, generally preferred by the tobacco-growers of Jefferson county, has a delicate fiber and a silky appearance, and shows some slight modification, owing to the climate and soil, when compared with the same variety grown in Lancaster county, Pennsylvania. Tuis variety loses in body but increases in fineness of leaf, and its capacity for moisture is increased 4 or 5 per cent.

The Connecticut broad leaf, or, as it is called by some, the East Hartford Connecticut leaf, is preferred by many on account of its superior yield. Though its color is inferior, being lighter than the Peunsylvania seed-leaf, it has a coarser fiber, but a very thin, delicate web. It has a drooping leaf in growing, while the Lancaster grows withan upright leaf, resembling in this particular the Ouba varieties, and the leaf is ruffled and corrugated. This is doubtiess the same variaty known in Pennsylvania as the Glessner, a variety highly prized for its excellence as a wrapper.

The Fallandigham is cultivated to a considerable extent in the neighborhood of Edgerton, Rock comnty, and has a large, pointed, smooth leaf, which makes it easy to worm.

All these varieties of seed-leaf are used for wrappers, fillors, and binders in cigar-making, the inferior grades being often mixed with southern leaf, in the proportion of one to forr, for making fine-ent smoking tobacco.

The Ouba varieties, for the reasons already mentioned, are growing rapidly into favor. After three or four years' planting from seed originally brought from Cuba these varieties lose much of the aroma which distinguishes them the first year, but the size of the leaf is greatly increased, and enough of the sweet flavor is retained to make the product of great value; for as the amount of sweet fillers is decreased the ratio of wrappers to the whole is increased, and it is a question among growers whether the change is not, on the whole, a benefit rather than an injury-an improvement rather than a deterioration in the variety.

SOILS FOR TOBACOO.

Three chasses of soils are recognized by the tobneco-growers in Wisconsin: 1. The caleareons sandy soil. 2. The clayey soils, light and heavy, mulatto in color. 3. The prairie soils.

The first is greatly preferred, not only because it is more easily tilled, but because the quality of tobacoo grown upon it commands a higher price and readier sale. It produces a silky, elastic, glossy leaf, uniform in color, and the plant matures fally a week earlier than the clayey soil. The timber growth is chiefly white and burr oak, with hazel undergrovth. Sometimes this soil is found on the prairie lands. The clayey soils occupy more elevated areas, with open woods, the principal arboreal growth of which is white and burr oak, with maple on the heavier soils.

The tobacco grown on clayey soils is coarse, thick, not uniform in color, and is generally of an inferior quality in every way. The lighter the clay the better the tobaceo.

The prairie soils are extremely variable in their adaptability to the growth of tobacco. Where there is a predominance of clay, and when these soils are of a black, waxy character, they are totally unfitted for the production of tine leaf, but with a suitable admixtnre of sand they belong really to the class first mentioned, and have the eapacity of producing tobacco of a most desirable quality. The largest proportion of tobaceo land in Jefferson county is prairie.

It has been ascertaned by experience that the presence of gravel in a dry season is a great disadrantage to the tobacco-plant, but in a wet season it proves of benefit, inasmuch as it allows the superfluous water to drain off.

The slopes which run down to the shores of the lakes, and more especially the eastern slopes, in which there is a variable quantity of feldspathic, gneissoid, and limestone gravel, with sand in varying proportions, are found well adapted to the production of tobacco. Between the low bottoms on the streams and lakes and the elevated areas which rise up probably a hundred feet or more above the valleys are moderately undulating plains, in which, for the most part, the soils best suited for tobacco are found. Around Edgerton, which may be considered the center of the tobacco growing region, there are many square miles occupying this medial topographical position, in which the light, marly clays and the caleareons, saudy loams abound. So also east and west of Janesville, for twelve or fifteen miles, the calcareons, sandy loams predominate. In the southwestern part of Jefferson, north aud east of lake Koshlkonong, the light, marly elays, well adapted to the growth of tobacco, abound; but the quality of the product grown apon these light clays is considered inferior to that grown on sandy loams or calcareons sands.

The prairie soils do not wash so easily as the more loose calcareons soils, the latter requiring considerable care in their cultivation, especially when the slopes are sharp, as they are liable to be damaged almost irreparably by heavy rain storms.

gRades of tobacco produot.

There are three grades of tobacco in Wisconsin : wrappers, fillers, and binders, the proportion of grades varying greatly with the seasons. If the season be entirely favorable, the proportion of wrappers will, in a good crop, reach 66 per cent. of the whole; but a very wet or a very dry summer will diminish this proportion to 50 per cent., or even less. Taking the average of crops and seasons, a fair estimate of the proportion of grades will be: wrappers, 50 per cent. ; fillers, 25 per cent.; binders, 25 per cent. It is believed that the proportion of high grades has been very much increased during the past few years, and one reason given for such improvement, namely, that the tobacco is planted year after year upon the same laud, is certainly an anomaly in agriculture.

The proportion of grades probably depends more upon the character of the soils than upon anything else. Tobacco grown upon uew land, or land freshly cleared, has a harsh, woods, stiff leaf, but a pleasant flavor. Such tobacco furnishes a small proportion of wrappers, but a large amount of excellent fillers. It has but little gum, not enough to make it stand the sweating process well, and the color is light and the leaf thin. When the soil has been properly fertilized, there is an elasticity in the leaf which peculiarly fits it for wrapping purposes, and when tobacco is grown on such land the proportion of wrappers is largely increased and the inferior grades are reduced
to a minimum. Level lands usually produce a much larger leaf than rolling lands, but it is not so fine, the tobaceo grown on the latter commanding a higher price in market, while that grown on the former will make a heavier yield per acre. In many localities the seed-leaf is grown, for the most part, on level lands, and the Spanish varieties on rolling surfaces.

TOBACOO FERTIIZERS.

Fully four-fifths of the lands planted in tobacco are heavily fertilized with barn-yard manure, from ten to twenty londs being applied to every acre, at a cost varying from $\$ 10$ to $\$ 20$ peracre; and it not unfrequently oceurs that the lands intended for other crops are robbed of their due proportion of manuro in order that the tobaceo lands may be emiched to their full capacity of production. This is plainly seen in the exubermbtgrowth of the tobaccoplant and the scanty growth of some other crops. The tendency, however, is to a better preservation of the soil by increasing the manure piles and making use of the large deposits of muck which are so abundant in southern Wisconsin. Manure is applied broadcast, and is plowed or harrowed in a few weeks before the land is finally prepared for transplanting.

The effect of mannes upon the yield and quality of the crop is very great, good, rieh bottom-lands, without any lecent application of manure, producing about 1,000 pounds of medium seed-leaf tobacco per acre; but with the application of ten loads of manure to the acre the yield is increased for the seed-leaf from 000 to 700 poonds, the quality being fully a third better, and the tobaceo is darker, richer, and silkier. The increase in yield for the Spanish varieties is about 25 per cent., but manure does not appear to improve its quality to the same degree as with tho heavier seed-leaf varieties. Instances are given where the same land has been planted in tobacco for a period of twenty-seven years in succession without any apparent diminution in its producing capacity. The land, however, las received heary applications of manme every year, It, is a very rare thing for any land, except that newly cleared, to be planted in tobacen without previously applying fertilizers. The few cases, however, reported show a decline in yield of at least 10 per cent. amnually.

In the region immediately around Edgerton an increase in the yield of similar varieties is reported of 20 per cent. within the past ten years, but in Tefferson county a decrease of 10 per cent. within the same period is given. This difference is due to the fact that near the former place only heavily manured lots are planted in tobacco, while in the latter a larger proportion of newly-cleared lands is used for growing tobacco, and, as is probably the case, the best tobacco lands were the first clenred, leaving the inferior new lands to come in later. In Rock, Dane, and Greene counties the general practice among tobacco-growers is to keep the same field year after year in tobacco, the land receiving a heary coating of manure every year; and in this way there is, so to speak, a cumulativo strength given to the soil, no one crop being suffleient to exhaust tho manure applied for its production. The soil, therefore, is constantly improved and enriched, and each successive crop shows a larger yield. In Jefferson county, on the contrary, the schedules show that the principle of rotation is practiced to a considerable extent. Alter tobacco comes whent, followed by clover, and then corn, after which comes tobaeco again. Notwithstanding the fact that the furmers in a large portion of the tobacco-growing district do not practice green-manuring or rotation, it is admitted that it would add to the friability of the soil and make it more retentive of moisture during the summer montins.

Losses in the crop not unfrequently' oceur from "brown-rust" or firing, and a few days" delay in housing will sometimes reduce the quality of the tobacco fully one-half. "Brown-rust" is a disease resulting from the combined effects of hot weather and a superabundance of heat-producing manure in the soil.

All reports, however, concur in saying that the general quality of the crop duning tho past ten years has been greatly improved in consequence of increased care and attention in honsing, curing, and assorting. The increased knowledge, too, among farmers has led to a better selection of soils, which, when once proved congenial to the growth of tobacco, are set apart for that purpose, and are kept up to a high degree of fertility.

Of the tobacco lands in cultivation probably two-thirds were originally prairie, with a calcarcous, sundy loam; tho remainder originally oak openings, with hazel undergrowth. Probably only 4 or 5 per cent. of tho soils adapted to the growth of tobacco are occupied in its cultivation in the counties under consideration.

SEED-BEDS.

The seed-beds are burned lightly with brush, and a liberal supply of hen manure or horse dung is worked into the soil to the depth of 6 inches with a hoe or a spade. The work of preparation often begins in July, when the manure is applied. The bed is reworked in August and again in September, for the purpose of keeping down any weeds or grass that may spring up, and finally, in November, it is hoed and ralked and prepared to receive the seed, which is either sown in the fall or early in the succeeding spring. When sown in the fall, the seed is not previously sprouted. After sowing, the bed is compacted by rolling, trumping, or clapping with a board. The plants are carefully nursed by liquid manuring, and by keeping the grass and weeds pulled out. By proper care, they will be large enough for transplanting in the field by the 1st of June.

PREPARATION OF TOBACOO SOIL.

The land for the succeeding crop is plowed in the fall, immediately after the tobacco is harvested. This cheoks the growth of suckers, which always shoot up from the old stabble, and are gross feeders, furnishing also arefuge for worms. The breaking is done with a two-horse turning or stubble plow to the depth of 5 or 6 inches. About the flrst of the succeeding May the soil is again broken with the same plow, and a thind time about the first of June, or just before the plants are ready for transplanting. Manure may be applied at any time before cither plowing. Coarse manures are better when applied in the fall, but fine, well-rotted manure is usually spread over the land just before the second or the third plowing. Some do not apply manme until after the third plowing, when it is harrowed or dragged in. After being thoronghly pulverized with a harrow or drag, the land is marked off: if for seed-leaf, $2 \frac{1}{2}$ by 3 feet, some preferring 4 by 2 feet; if for the Spanish varieties, 3 by 1 feet. Hills are generally made with a hoe at the intersection of the lines and "patted" so as to compact the earth; but when only lined out one way, they are made on the line at proper distances. Sometimes no hills are made, but the plants are set out on the side of the lines. The plants are generally set out immediately after a shower of rain, but when water is couvenieut, aud the plants are becoming overgrown in the beds, artificial watering is often resorted to. The planting is done from the 1st of June to the 4th of July, but these are extreme limits. The great bulk of the crop is set out from the 10th to the 20th of June.

By an easy calculation, it will be seen that, of seed-leaf, from 5,445 to 5,808 plants are set to the acre, and of the Spanish varieties 9,680 plants, a larger number to the acre than is planted in any other tobacco district in the United States. To this cause is no doubt due the exceeding tenuity and tenderness of the Wisconsin tobacco.

OULTIFATION OF THE TOBAOCO OROP.

As soon as the soil is in proper condition to work after the plants have been set out a cultivator, with live teeth, is run between the rows, and this is kept up once or twice a week, until the field has been gone over five or six times. The crop is hoed twice, once after the cultivator is run through the first time. Very little dirt is put to the plant, level cultivation being preferred. In some portions of the district a horse-hoe is used in cultivating thercrop, which, by its peculiar construction, onables the farmer to go very near the plant and stir erery part of the soil. In very small patches the cultivation is done entirely with the hoe, which is kept up every week until the plants are so large that they cannot be worked without breaking the leaves.

TOPPING AND SUOKERING OF TOBAOOO.

In about forty-eight or fifty days after the plants are set, if the crop has been well cultivated and the weather seasonable, the flower buds make their appearance, and are pinched out, leaving from fourteen to sixteen leaves on each plant. None of the bottom leaves are taken off, but all are left to mature or dry up, serving as a protection against the dirt. Fields, however, aro often seen in full blossom before the tobacco is topped, and this results in great damage to the crop. Tobacco is suckered twice: once in about a weok after it is topped, and again just before it is cut, which is generally about two weeks after topping.

As has been noted, tobacco is generally ready for harvesting in two weeks after being topped, and yet thero is considerable variation in the time on different soils. On warm, sandy loams the plant will be as ripe in twelve days as it will be on heavy clayey soils in eighteen days. This is one of the reasons why the sandy loams are preferred.

TOBACCO INSECTS.

Fortunately for the tobacco-growers of Wisconsin, the horn-worm, the great enemy of the tobncco-plant in other states, has never appeared in great numbers, the farmers ascribing their immunity from them to the frequent plowings which they give the land before planting, thus disturbing them in their beds while in the chrysalis state, some of them being covered so deeply that they are not able to extricate themselves, while others are thrown to the surface and are devoured by fowls. The severity of the winters also destroys a considerable number. The farmers carefully search every leaf that indicates their presence. Grain is sometimes thinly scattered on the tobacco-fields and fowls are driven upon them, and while hanting for the grain they gather many of the worms. This mode is not reported from any other section.

CUTTING, HOUSING, AND OURING OF TOBAOOO.

Harvesting begins early in August, and continues without intermission into September. A large portion of the crop of 1880 was harvested during the first and second weeks in August. The time of day preferred for cutling is from two oclock in the afternoon until nearly sundown, because at that time tobacco is less liable to be blistered by the heat of the sun. The instrument used for cutting is a hatchet, the plants being cut off nearly on a level with the ground and laid back on the rows to wilt. After wilting they are speared on laths. Of the largo seedLeaf varieties only abont six plants are pat on a lath, but of the smaller Spanish or Favana varieties teu are not. considered too many. After being speared on the laths, the latter are carofully put on a long wagon-frame, made 828
for the purpose, and carried to the sheds, where they are arranged on the tier-poles, or racks, from 6 to 10 inches apart, according to the size of the plants, but never so close as to permit them to touch each other.

It requires six weeks to cure the Spanish varieties perfectly, and two months to cure the seed-leaf. If the weather is dry after the crop is housed, the doors are kept closed during the day and opened at night, but extreme caro must be taken not to cure too rapidly. In muggy, sultry weather as much air as possible should be given, thorough ventilation being indispensable to prevent pole-sweat. Continuous damp weather or continuous dry weather are both to be feared. It is believed by many good growers that white veins are the result of a drought after the tobacco has been larvested, and it is said that no crop cured when there is plenty of rain is ever affected with them. Inferences of this kind, however, are too often drawn without considering a sufficient nmmber of cases to warrant the enunciation of a general law. It is a well-established truth, however, deduced from the universal experience of the cultivation of seed-leaf tobacco in every state, that a crop camot be well cured without the alternations of moist and dry atmosphere.

TOBACOO-HOUSES.

The tobacco-houses, or sheds, are generally very inexpensive frame buildings, 14 feet high, 28 feet wide, and long enough to harvest whatever number of acres the farmer may wish to raise. The height between the tiers is usually $4 \frac{1}{2}$ feet, which allows ample room for ventilation. The height of the shed gives three tiers from top to bottom, allowing half a foot between the tails of the tobacco hang on the lower tier and the ground. The capacity of these sheds varics from 2 to 12 acres, and many of them very rickety and open, and are totally unfit for the purpose. The tendency, however, is toward improvement, for observing famers have discovered that to cure tobacco properly it is necessary to be able to control the conditions which surround it. The cost of the best sheds at present does not exceed $\$ 600$.

PRLPARATION OF TOBACOO FOR MARKET AND PRIOES.

From the 15th of November to the 1st of January is the usual period for preparing the crop for market. The usual practice among farmers is first to strip the leaves from the stalks, tying them up in large bundles and assorting afterward. A few assort directly from the stalk, but "table assorting", or assorting after stripping, is preforred by the most painstaking farmers. After the tobacco has been carefully assorted into three or four grades, generally first wrappers, second wrappers, fillers, and binders, it is tied in "hands" of from cighteen to twentr leaves, securels wrapped with a leaf at the butt-end, and "bulked" or "banked" in piles, with the heads out and tails overlapping in the center of the bulk. Here it remains until the "fatty stems" are thoroughly cured, when it is ready for market, unless the grower prefers to pack it in boxes himself. The selling goes on all through the winter, and even up to May. In all the towns and villages of any considerable size in the tobacco-growing region there are established what are known as warohouses, where dealers buy, pack, and sweat the crop, preparatory to sending it to more distant markets. In the town of Edgerton there are thirteen of these warehouses, and it is estimated that during the year 1879 fully half a million dollars was disbursed among the farmers in the immediate vicinity for tobacco.

Stoughton has tive warehouses, and the amount disbursed in 1879 in the purchase of tobacco was about $\$ 214,000$. Janesville has one, which pays out $\$ 40,000$, and Evansville one, where $\$ 25,000$ was disbursed during the same. year. Several other places, as Madison and Milton, have recently entered into the business of bnying and packing tobacco, and there is no other crop grown in the state which gives such animation to trade, or which supplies the farmers so surels with ready money. The total expenditure in 1870 by local dealers in the state for tobacco delivered loose was estimated to exceed $\$ 890,000$.

The following were average prices paid for crop through (that is, including all grades) for the product grown in the annexed years, but sold in the market the following years:

Year,	Seed-leaf.	Spanidh,
	Obnts.	Oents.
1875 (frosted)..	4	None.
1876...........	0	8
1877.	61	8
1878.	00_{1} to 7	- 0
1879.	7	12

When sold by grades the following prices prevailed in 1879 :

Grade	Sced-leaf.	Spanish.
	Oents.	Oents.
Ftllors	2 to 4	4
Binders.	4 to 7	8
Wlappers.	8 to 15	10

The crop of Spanish tobacco, when sold loose, averaged 11 cents round in 1879.
The crop of 1879 was damaged to some extent by winds and storms, and while the average price of the crop of seed-leaf did not exceed 7 cents per ponnd, the better crops readily brought from 8 to 10 cents.

LANDS, LABOR, AND COST OF TOBACCO PRODUOTION.
The price of tobacco lands in Wisconsin ranges from $\$ 35$ to $\$ 75$ per acre, the average being about $\$ 50$. When rented, land commands $\$ 10$ per acre, or oue-half of the crop prepared for market, the landlord furnishing sheds and team, but not boarding the temant. The price of labor is $\$ 30$ a month for men, $\$ 125$ per day, or $\$ 150$ jer year, board included. In such cases tobaceo laborers command about $\$ 5$ per month more than other field hands. Strippers of tobacco are paid $\$ 1$ per day, and to strip from 150 to 200 pounds is cousidered a fair day's work. Packers are paid $\$ 1.25$ per day. A good man, with help, during the season of harvest, can plant and cultivate five acres of tobaceo.

The following detailed estimate of the cost of cultivating, curing, and marketing an acre of seed-leaf tobaceo was made by Mr. Thomas Hutson, of Edgerton, one of the largest and most successful growers in Rock county:

Dr.	
Cost of making seed-bed for one acre.	. 90
Cost of seed	50
Weeding and attention to seed-bed	100
Ront of land (interest on price, at 10 per cent.)	500
Stable manure, six cords, cost.	600
Cost of applying same.	600
Cost of breaking one acre three times.	375
Harrowing, liniug out, and hilling	150
Drawing and sotting out plants	300
Cultivating and hooing.	700
'Topping, 25 conts; worwing, 50 cents; suckering, \$2 50	. 325
Harvesting.	- 500
Taking down, assorting, and strippiug	. 1200
Bulking	25
Use of barn, laths, wagon, oto.	500
Delivering crop to markot.	150
Total costi.	. 0125
Cr.	
By 1,600 pounds of tolacco, at 7 cents.	\$11200
Profit.	5075
Cost, $\$ 383$ per hundred pounds.	

It is believed that the cost will be reduced in a crop large enough to employ a full set of hands; that is, hands enough to haudle the crop most expeditionsly and to employ the tean to its full capacity. As the Spanish varieties bring a much higher price, though not pielding so mach per acre, it is probable that they pay as gool if not a better profit than the seed-leaf. The estimated cost of production for the whole state may be stated as $\$ 405$ por hundred pounds.

PECULIARITIES OF WISOONSIN TOBACOO.

The burning qualities of the Wisconsin tobacco are generally excellent, leaving as a residuum a whitish solid ash, much diminished in size from the original bulk. The tobacco is peculiar in holding more water than any other grown in America; is always limp, and retains its humid, flexible properties during the coldest weather, but loses from 18 to 20 per cent. during the sweating process. The Wisconsin tobacco has great uniformity in coler, beiug a dark brown, but the leaf is extremely thin, and often lacks substance. When it has been resweated it very much resembles the Connecticut seed-leaf in texture, though somewhat darker in color. It then has a very fine finish, and but for its tenderness would take a very high rank among cigar manufacturers. The same humidity is observed in the Havana or Spanish leaf, and this excess of moisture often causes it to damage during the sweating process. It is probably owing to this excessive presence of water that the Wisconsin tobaceo is so uniform in color.

miscellaneous.

Hailstorms are sometimes very destructive, one which occurred in 1878 destroying in the vicinity of Eigerton 10 per cent. of the crop. These storms occur more or less every year, but usually in narrow belts.

Cases 212 by 21 by 31 feet, suitable for packing tobacoo, cost $\$ 1$ each, from 300 to 450 pounds being packed in a case. New York buyers pay local agents $\$ 1$ per case for buying.

A day's labor is ten hours when the laborer is employed for one day only, but if he is employed by the month twelve hours are reckoned a day's work.

Artificial sweating is believed by some of the best deakers to be accompanied with less risk than sweating by the natural process, and the second stories of warehouses are sometimes prepared as sweating chambers b,y being phastered or closely ceiled. These are heated by furnaces, and the temperature of the rooms is kept at 110° to 140°. About forty-two days are required to complete the process, when the tobacco is ready for market.

Any one can become an inspector by grarantecing the samples drawn from a case to represent correctly the quality of the tobacco and its condition in the caso. These samples are, however, usually drawn by inspectors sent out from other places, or by agents representing houses in other cities.

The great bulk of the tobaceo, after being cured and sweated, finds its way to New York, Philadelphia, Baltimore, Cincinnati, Suint Louis, Hartford, and other points where there is a reguar demand for cigar tobacco, and is marketed at all times. Farmers, however, usually deliver the crop to local lealers in the winter and spring, and the hatter usually keep a supply on hand throughont the year.

The tobacco product of Wisconsin is the tenderest of all the seed-leaf products, and in working must be handled with great care. In consequence of the great absorptive capacity of the leaf, much of it is damaged by extreme fermentation during wet, hot weather. Nor does it auswer weil for exportation, the set sweat greatly damaging it.

The following statement will show the production, acreage, siold per acre, and value of the Wisconsill crop for the four years ending in 1879, the figures for the latter year being from the census retums:

Tone.	Production.	Acreage.	$\begin{aligned} & \text { Xiedd per } \\ & \text { aere. } \end{aligned}$	Vuluc in primary murkets.	Value per pround.	Value por ners.
1870.	Pounde. $7,572,302$	5,568	$\begin{aligned} & \text { pounds. } \\ & 1,360.00 \end{aligned}$		Conta. 0.75	\$01 80
1877.	$7,205,002$	5,504	1,320.00	508, 502	7.00	9240
1878.	0, 082, 002	7,500	1,210.00	073,904	7.20	8712
1879.	10,008,423	8,810	1,204, 13	809,118	8.47	10100

Chapter XIX.

THE NEW ENGLAND TOBACCO-GROWING DIS'TRIOT.

HISIORICAL NOTES.

The cultare of tobacco in the Comecticut valley is almost coeval with its first settlement. As early as 1040 an aet was passed restricting the use of tobacco to that grown in the colony, under a penalty of 5 s. for every pound expended for imported tobacco, "except a license should first be obtained from the court." Under this restriction the culture, as well as its use, becume general, and efforts were made by the colonists in $1646-47$ to curtail its consumption by a prohibitory law, which acted upon the consumer, but not upon the merchant, trader, or farmer. This law provided that no one under the age of twenty years, nor any other persom who had not become addicted to the habit, should take any tobacco without a certificate from a physicion that it would be beneficial to him. It also provided that tobaceo should not be taken publicly upon the streets, ander the penalty of sixpence for each offense.

In 1662 a duty of 258 . per hogshead, or 22 . per pound, was laid upon all tobacco brought into the colony. In 1753 inspectors were appointed to examine the tobacco for shipment abroad, and to take out all that was in any way injured by frost, heat, moisture, or in other manner, and to pack only the sound, well-ripened, well-cured tobacco, 'which should in every way be good and merchantable. For this service the owner was required to pay $5 d$. for every hundred-weight and 3a. per mile for travel of the inspector, and all tobacco sold without inspection was deolared forfeited.

At no period previons to 1801 did the production of the Connecticut valley exceed 20,000 pounds, and it was shipped for the most part to the West Indies, being purchased at from $\$ 3$ to $\$ 333$ per hundred pounds by local merchants, by whom it was packed and exported.

About $1801-9$ tobacco was manufactured in a small way by individuals ; but it was not until 1810 that cigar manufactories were established-one at East Windsor and another at Suffield, Connecticut. Spanish tobacco, imported from Ouba or the Brazils, was then for the first time employed in the fabrication of cigars, and these were peddled in wagons throughout the country.

The year 1825 marked a new era in the history of tobacco culture in the valley, and a packing-honse was erected at Warehouse Point, about 3,200 pounds being packed and shipped to New Xork. This tobacco was packed in bales, inclosed with boards on four sides, leaving the ends exposed, and weighed about 100 pounds each. The cultivation was gradually extended, and in 1840 it was a general crop, though small, growin as regularly as any other in the valley.

Previons to the year 1833 a variety of tobacco, with a very narrow leaf, called the Shoestring, was cultivated, which, though strong and heary, was not well adapted to the purposes for which Connecticat tobacco is now used. About this time a broad leaf variety was brought from Maryland, having a very delicate, thin, silky leaf, regular
veins, comparatively tasteless, of fine finish, and very pliant. B. P. Barber, of East Windsor, Connecticut, has the credit of introducing this tobacco, which has, by skillful and intelligent management, established a reputation second to none grown in the United States.

Meauwhile factories were erected from time to time, natil in 1850 about four hundred men and two hundred women found employment in making cigars at various points from Springfield, Massachusetts, to Middletown, Connecticut, the average wages earned by men being $\$ 0$, and by women $\$ 4$ per week. (a) In 1860 there were fortyfive of these establishments, with a capital of $\$ 389,600$, employing 731 persons, at an annual expenditure for wages of $\$ 274,911$ and for material of $\$ 381,150$, turning out an annual product estimated to be wortle $\$ 914,500$. In 1870 there were in Connecticut alone one hundred factories making cigars and manufacturing tobaceo, employing 719 hands, with a capital amounting to $\$ 409,750$, expending for wages $\$ 303,109$, for material $\$ 441,663$, and turning ont a product valued at $\$ 1,133,665$.

The demand for raw material created by these manfacturing establishments rapidly stimulated prodnction, and the prices paid were highly remunerative, almost every farmer living within convenient distance for delivery, and who possessed lands suited to the growth of tobacco, endeavoring to supply the demand.

Mr. Heury A. Dyer is authority for saying that in 18401,800 cases, or about 720,000 pounds of tobacco, were packed in the Connecticutvalley. The census for that year reports ouly 537,649 pounds for all New England, being the crop of 1839. In 1842 the estimated crop in Connecticut valley was 5,000 cases, or $2,000,000$ pomels, and in 1845 the product of Connecticut alone was $3,467,940$ pounds, as given in a state statistical report.

The first tobaceo grown in the Honsatonic valley for market was in 1845, in Kent, Litchtield county; the next was grown near New Milford; and in, 1870 it became one of the leading products of the valley. Housatonic tobaco became very popular in 1876 for cigar wrappers, and thereafter the increase of product was very rapid.

TOBACOO PRODUCI.

The following table shows the production of New England for each of the census years from 1840:

States.	1840.	1850.	1860.	1870.	1880.
Comneotiout....	471, 647	1,207, 624	6,000, 183	8,328,708	14, 044, 052
Massachusetta.	64, 055	138,246	8, 233, 108	7,812,885	5, 809, 436
New Hampshire.	11.5	50	18,581	155, 334	170, 843
Vermont...	585	12,245	72, 671	131,432
Rhodo Taland..	817	708	790	785
Maino..	30		1,583	15	250
Total.	587,640	1,405, 020	0,200, 448	15, 870, 409	10,717, 898

Begiuning with the year 1855, Massachusetts has taken a state census, intermediate between thoso taken by the general government. The state census makes the following showing for 1855:

Counties.	Aores.	Value.
Berkahiro.	2.0	\$250 00
Imanitin.	93, 5	12,403 00
Famplen.	170.5	21, 228.74
Hampshire	155.0	23, 00000
Total.	421. 0	57, 481.74

It does not appear how many pounds per acre were produced during this year; but if it bo estimated at 1,660 . pounds, which was the yield per acre in 1865, the average value was $\$ 13654$ per acre, and $\$ 820$ per hundred pounds.

In the year 1865 the following statement is given in the Massachusetts state census:

Oounties.	Acres.	Pounds.	Value.
Barnstable	0.5	360	\$90
Berkshire	160.0	198,800	20, 277
Bristol...	3.0	2,420	777
Dukes.	0.6	800	150
Eөbex.....	5.0	4,800	1,076
Tranklin	1,053.0	8, 148,700	516, 210
Hamplen..	1,087.0	1,500, 643	308,445
Hampehire	2,409.0	4, 894, 925	751,654
Middlosox	6.0	3,405	732
Norfolk,	0.5	775	248
Plymouth...	2.0	1, 616	701
Worcester.	36.0	40,218	7,030
Total	6, 017.5	2,361,641	1, 616,390

a Connectiout Agricultural Report, 1856.

These figures show production per acre of 1,666 pounds; value per pound, 17.27 cents; value per acre, 828774 ; an increase during the decade of 1,235 per cent. in total production, and an increase of value per pound of 9.07 cents, or 101 per cent.

The state census of 1875 shows the following acreage, production, and value:

Comotios.	Acres.	Pounds,	Vino.
Berkahro.	00.25	00, 000	\$16, 448
Bristol. .	0.25	530	78
Kasex.	0.75	1,000	80
Frunkin ...	1,210,50	1.007.001	321, 815
Hampdon.	808.50	1, 224, 670	230, 475
Homphilivo..	1,052, 25	2, 005,501	402, 050
Midellesex	0.12	240	53
Plymouth.	70	10
Worcestor.	10.00	14,805	1,638
Total	3,757.02	6, 008,000	1,032, 202

This table shows production per acre, 1,50\% pounds; value per pound, 17.22 cents; value per acre, $\$ 274.71$; a decrease of production, as compared with 1865 , of 36 per cent., and with 1870 of 18 per cent.

Previous to the jear 1840 prices for the different grades ranged from $\$ 4$ to $\$ 7$ per hundred pounds. After that prices increased rapidly, and good wrappers were worth in $1857 \$ 40$ per hondred pounds.

The erection of numerous warehouses for packing tobaceo finally resulted in making them sale houses as well as packing establishments. The custom has become general among farmers to sell their tobacco loose from wagons to the warehousemen at an agreed price for the crop throngh, the purchasers to assort, pack, and aweat, the tobacco, shipping it for sale to such markets as offered the best net returns. Very fow planters now assort and pack their own crop, as it is found to interfere very much with the production of another crop, requires more time than can be well spared from other farm work, and cannot be done as well nor as economically by the planter as by the dealer, who is provided with conveniently arranged houses and implements for the purpose.

SURFAOE TEATURES.

Tobacco in Now England is now cultivated in two well defined regions: 1. The Connecticut valley. 2. The Honsatonic valley.

The Connecticut valley is one of the finest regions in America, combining in an unusual degree a quiet beauty with great agricultural capabilities. The valley, so called, of the Connecticut river is about 300 miles in length, and is not far from 20 miles wide. The bounding hills are not, as a general thing, very symmetrical or rounded in ontline, but have angular or irregular forms.

On the west the Connecticut valley is bounded by the Green mountain, the Hoosio mountain, and the great billowy plain which divides it from the Housatonic. On the east are the White mountains, culminating in Mount Washington, 6,428 feet above the sea. Mount Holjoke, 830 feet above the Connecticat river, which washes its base, and 900 feet above Boston harbor, is part of a greenstone range which, beginning with West Rock, near New Haven, runs northward across the state of Connecticut, entering Madsachasetts between Springfield and Southwick, and at East Eampton, in Connecticut, it mounts into an elevation of over 1,000 feet, forming Mount Tom. The valleys on the north and west of Holyoke are very fertile.

GEOLOGIOAL TORMATIONS AND SOILS.

A large area of the northern part of New Hampshire is covered by a series of greenstone or trap rocks, a compound of hornblende and feldspar. These occur in groups, and extend along the Connecticat river, through Massachusetts and Connecticut, to the sea-shore, and are believed to be metamorphosed sedimentary accumulations of the Silurian age. Although of a remarkable constancy in respect to their rock constituents aud chemical composition, they frequently differ as to the relatire proportions of these constittents, extensive granite and gneiss deposits, or sandstone, being frequently found in juxtaposition to the trap or greenstone, and in some instances limestones are found associated with feldspar and free quartz. In some granitoid rocks the feldspathic constituents predominate, in others the horublende, and in others the mica, while apparently under less favorable conditions for metamorphosis the argillaceous sedimentary accumulations have retained to a considerable degree their original stratified amorphous character. Red sandstone ridges and trap rock also contribute largely in some parts of the valley to the striking beanty of the scenery along the river. The valley of the Connecticut river, like many of the New England valleys, has received extensive drift deposits, making thick beds of gravel, sand, clay, or fine silt, during the Champlain period. These drift deposits, composed for the most part of rounded
pebbles, from the size of a goose egg to tine sand, are sometimes 100 feet or more in thickness, and show signs of stratification. In some places segregated beds of drifted sand appear, and in others beds of clay. These stratified and unstratified deposits have been modified by erosion.

The lands along the river rise on both sides quite frequently into terraces, and these level-topped elevations are the flood plains of the river, indicating distinct periods in the history of the erosion of the valley. The highest of these terraces extends over a wide area, and is cot here and there by the tributaries of the Connecticut river or disturbed by projecting hills. The lower terraces seldom extend over more than a mile or two, and on the opposite sides of the river these heights, unlike those of the highest terraces, are of different levels. The present flood plain is commonly known as meadows. The material which composes the highest plains is of a coarser character than that which contributes to the bottom lands or meadows; but before reaching Eartford these varying rocks have become ground into a fine material, and have commingled so thoroughly that all the elements find a lodgment in the soil; in fact, the areas covered by coarse materiad-due to immediate glacial action-are more extensive in the northern part of the valley than in the middle and southern portions. The superior physical condition of the soil upon the present flood plain of the Connecticut river is the principal cause of the high agricultural value of the lands along the river.

The more recent alluviums occur more or less in the valleys of all the streams, and form in the low depressions swamps and marshes. Sometimes the alluvium is composed of coarse material, very gravelly, and unsuited in a great degree for agricultural purposes; again it consists of very fine clayey or sandy loams; and when the sand and clay commingle in proper proportions the soil is generous in its fertility.

The tobacco area of the Housatonic valley is confiued to Litchifeld and Fairfield counties, spreading out westwardly so as to take in a small portion of the counties of Duchess and Putnam, in eastern New Yorlk. Only the northern part of Fairfield comnty, however, is embraced within this area, the southern part, as is the case with the southern part of Middlesex county, in the Connecticut valley, being, as is conjectured, too near salt water to produce tobaceo of good burning qualities.

The Housatonic valley is narrow, and in many places can scarcely be said to have any bottom lands, resembling a deep gap ent through a high rolling region. Here and there small, semi-elliptical low fields or pockets are to be seen, covering a few acres, and these are succeeded by the plateaus of high terraces. These, in turn, are carved into so many fantastic shapes by ravines and small brooks as searcely to be recognized as terraces. Beyoud these, to the east and to the west, are long, sloping hills, irregular in outline, the sides of which are generally clothed with different species of the oals and the chestnut.

The soil of the comentry throngh which the Housatonic river flows is variable. What are called lomy soils in this valley are, for the most part, derived from the breaking down of the feldspathic and trappean rocks. Theso soils are very rich in potash, and are generally selected for growing tobacco. The alluvial soils vary much in quality, being at times white and argillaceous and very cold and tenacions, and at other times but little more than beds of gravel. When there is a proper commingling of these two the soil is very light, productive, and durable.

The soils of the tobacco-growing portion of New England may be divided generally into two classes:

1. Those formed from the crumbling of the rocks in situ.
2. Those which have been derived from transported material.

The soil derived from porphyritic rooks is a dark argillaceous loam, of excellent fertility, and is suitable for grain and for tobacco. The micaceousferruginous rocks supply a soil well adapted to the growth of grasses, and the rounded green hills attest the value of these lands for pasturage. It is a fine, light gray loam, works easily, and constitutes a considerable part of the soils of several counties.

The soils of the granitic rocks are inclined to be coarse in structure and arid, and where disintegration has been carried to a sufficient degree of fineness the soil is of moderate fertility. Slaty soils, from chloritic slates and mica-schist, are inclined to be cold and wet; yet, when sufficiently drained, they are strong, and will retain fertilizers well. They make a red clay or loamy soil. The red sandstones furnish a thin, poor soil, unless the sandstones are argillaceous, when a very good soil results. The trap rocks, by reason of the calcareons spar which is associated with them, often crumble into a very generous soil, and oue that is durable in its constitution.

When there is a considerable amount of pebbles composed of carbonate of lime ${ }_{2}$ commingled in suitable proportions with feldspathic and ferruginous-micaceons rocks, the drift soil is supplied with every inorganic element necessary to its fertility. On the other hand, when the drift is coarse, and is composed mainly of quartzose gravel, the soil has an original poverty of constitution and such porosity that heavy fertilization will have only a temporary effect upon its power of production.

The soils of the first terrace above the rivers are probably, for all purposes, the best, and on these, for the most part, the tobacco crop is grown, though some is planted on the meadow lands. These latter usually require draining, and must be protected from orerflows. In some places in the Connecticut valley the soil is underlaid by a grayish clay, called "hard-pan", and when this is exposed to the atmosphere, it crumbles very readily. In places it makes a spongy soil, in others a heavy clayey soil, but ill-suited for the growth of any crop except the coarse grasses.

As tar as the mechanical and physical conditions are concerned, all stages, from a free pebbly mass to a retentive fine clayish soil, may be found in New Ingland. The surface soil is in some cases deep, in others quite shallow., In the latter case, especially in the Comnecticut valley, the subsoil is either hard-pan or stratified ferruginous sand deposits or graxel beds. In some localities the quartz sand is the predominating soil constituent; in others the hornblende, or the mica, or a ferruginous clay. The tobacco crop claims for its successful cultivation the best soils-wellsdrained, deep, mellow, clayey, or sandy loams-with a permeable subsoil. Snch soil is the best protection against mintimely dry or wet spells.

FOREST GROW'TH.
The crests of the hills are usually covered with pines, oak, and chestnut. The hemlock (Abies Canadensis) is found in shaded ravines and on the rocky banks of the streams. The slopes of the hills and low plains are here and there covered with red oak (Quercus rubra), black oak (Q.tinctoria), whiteoak (Q.alba), burroak (Q.ilicifolia). Thesugar maple (Acer sacchorimum) frequently occurs in groves more or less extensive. The exhausted pastures upon hills and along the slopes of the ridges are rapidly becoming covered with white birch (Betula alba, var. populifoliu), in some places pines, in others junipers (Juniperus communis-J. Virginiana), and huckleberry (Gaylussacia dumosa). Upon elevated clay lands are found the ash (Iraxinus Americana) and the hickories (Oarya alla and O. poroina). The original nataral growth upon the river lands seem to be elm (Ulmus Americanc), the pines (Pinus strobus and P. rigida), the red maple (Acer rubrwm); in wet places the alder (Alnus incana), the poison sumac (Rhus venenata), several species of dogwood (Cormus), and varions species of the order Dricacea, as rhododendrons, Epigoa, etc. The beedh (Fagus ferruginea), the butternut (Juglans cinerea), and linden (Tilia Americana), and buttonwood (Platanus occidentalis) occur on some of the lower terrace lands where the soil is good.

OLIMATE.

The climate of the tobacco negion of New Ehgland, though changeable, is remarkably mild and healthy for the latitude. Its severity is tempered by the proximity of the sea, and by the two large valleys, the Honsatonic and the Connecticut, and the warm aie from the ocean is drawn up into these channels and diffuses itself over the intermediate ligh lauds.

At New Haven, observations extending from December 10, 1872, to October 31, 1880 , show the mean temperature to be: Spring, 370.3 ; summer, $71^{\circ} .1$; autumn, 53°; winter, 300.8 . The greatest difference between the highest and lowest thermometer in any one year was 105°; highest recorded temperature, 950 ; the lowest, -14○. Lhe mean annual precipitation, 54.01 inches; mean of prevailing winds, south.

At Springfield, Massachusetts, the observations of the sigual service burean from July 19, 1873, to October 31,1880 , show the mean temperature to be: Spring, $47^{\circ} .6$; summer, 710.2 ; autamm, 520.1 ; winter, 290 . The greatest range of the thermometer in any one year was 1020.5 ; the highest recorded temperature, 940.5 ; the lowest, - 100. Mean anumal precipatation, 47.74 inches; mean of provailing winds, south. It will be seen that the temperature of the spring months is more than 10° lower at New Haven than at Springfield, thongh the latter is 48^{\prime} further north.

LOOALITY OF TOBACOO PRODUOLION AND COMPARISON OT REOENT OROPS.

The production of tobacco in the Oonnecticut valley is confined for the most part to the following connties: Middlesex, Hartford, and Tolland, in the state of Connecticut; Hampden, Hanpshire, and Franklin, in the state of Massachusetts; Windham, in the state of Vermont; and Cheshire and Sullivan, in the state of New Hampshire. In the Housatonic valley tobacco is caltivated in Pairfield and Litelfield counties, and to this valley belongs commercially the tobacco product of Duchess and Putnam counties, in eastern New York. New Haven county belongs in part to the Connecticnt valley and in part to the Honsatonic valley.

In acreage the crop of 1879 was in New Haven county 25 per cent. greater than in 1878,20 per cent. greater than in 1877 , and about equal to that of 1876. In Middlesex, Hartford, and Tolland counties the acreage for 1879 was about 5 per cent. greater than for each of the years 1878, 1877, and 1876. For the Jear 1875 the counties of the Elousatonic valley report an increase in acreage of 10 per cent. as compared with 1878 , and 5 per cent, as compared with 1877 and 1876. In Eamprden county, Massachusetts, the area planted in 1879 was 5 per cent. greater than in 1878 , 40 per cent. greater than in 1877 , and 15 per cent. greater than in 1870 . The acreage in Hampshire comuty, Massachusetts, has remained about the same for four years. On the other hand, there was a falling off in acrenge

* in Cheshire county, New Hampshire, of 10 per cent. in the crop of 1879 as compared with that of 1878 , the samo as compared with the area of 1877 , and a very great diminution, estimated at 50 per cent., as compared with the crop of 1876 . In the yield per acre there was for New Haven county 10 per cent. decrease in 1879 as comparect with 1878, 1877, and 1876; and Middlesex, Hartford, and Tolland show about the same. Hampden, as compared with 1877 , shows 5 per cent. decrease, and with 1876,10 per cent. decrease; Hampshire, 10 per cent. decrease as compared with 1878 ; Cheshire, as compared with 1878,10 per cent. decrease, and the same rate of decrease for the years 1877 and 1876. The yield per acre in Housatonic valley in 1879 was 15 per cent. less than in 1878 , and 10 per cent. less than in the years 1877 and 1876.

As to quality, the crop of 1879 in New Haven county was better than that of 1878 , equal to that of 1877 , and better than that of 1876. In Middlesex, Hartford, and Tolland comnties the crop of 1879 was better than that of 1878 or that of 1877 ; and while the crop of 1876 was not so good as that of 1879 , it was better than that of 1878 , which was rather an inferior one. Hampden county, Massachusetts, reported the crop of 1879 as being better in every respect than those of the two years preceding, and as fully equal to the crop of 1876 . Thie same may be said with reference to Hampshire county. On the other hand, the crop of New Hampshire in 1879 is said to be 20 per cent. worse thau those of 1878 and of 1876, and equal to that of 1877 . The same is true of the tobaceo district in Vermont.

It may be assumed that in the tobaceo-growing area of New England there has been a gradual extension of the area planted in tobaceo, and the crop of 1879 shows throughout the seed-leaf district an increase of about 17 per cent. over the three years preceding, and that, compared with the crop of 1875, which was a very large one, there was a decrease.

The crop, though large in area in 1879, did not equal in yield per acre that of 1878 by 10 per cent, and tho same may le said with reference to the years 1877 and 1876. The growth for the year 1878 was exceptionally large and the texture, good, but a considerable portion of the crop was injured by white veins and pole-sweat. In 1879 a larger amount of Havana tobaceo was grown in the counties of Massachusetts than usual, the entire crop of Seed Leaf and Havana being estimated to equal 10,000 cases, though the returns of enumerators would indicate 40 per cent. more. The crop of 1877 had a very large proportion of fine leaf, while that of 1876 was much below an averago in quality. Cheshire comnty, New IIampshire, however, reports the crop of 1879 as 20 per cent. poorer in quality than that of 1875 , abont equal to that of 1877 , and 10 per cent. worse than that of 1876 . The crop of 1879 was good; on the whole, better than the crop of 1878, particularly the seconds, as there was not so much of it injured by white veins or pole-burn. The product of the Honsatonic valley has gained popularity every year on account of its dark color.

For several years the wrappers of the Comnecticut valley, though fine and silky in texture, broad in leaf, and well handled, have been too light, approaching a cinuamon color.

varientes of tobacco grown.

The several varieties of tobaceo at present cultivated in Connecticut valley consist of Comnecticut Seed Leaf, Connecticut Broad Leaf, Havana, Havana Seed, Belknap, and John Williams. The Connecticut Seed Leaf is broad, with small fibers, strong, thin, elastic, and silky, and the leaves are set closely upon the stalk. The best leaves of this variety are used for cigar wrappers and the poor ones for binders and fillers. The Seed Leaf is almost tasteless, and when used as wrappers for Havana fillers does notimpair the flavor. The Broad Leaf is only a modification of the first, the leaves being broader in proportion to their length than the Connecticut Seed Leal, and the fibers run out more at right angles to the midrib. The Havana Seed is grown to a considerable extent, especially in the valley comuties lying within the state of Massachnsetts. This variety has a very thin, fine leaf, is delicate in flavor, and yields more wrappers to the pound than any other variety planted. Grown in the Housatonic valley, this variety is noted for its fineness of texture and glossiness of leaf, which, after sweating well, has all the softuess aud brilliancy of a piece of silk; and as it cures a dark color, it is very popular with cigar manufacturers. It can be planted muel closer than any other variety. Havana is that grown from imported seed; Havana Seed is that produced after four years. The principal objection to this variety is made by the farmers, who assert that, though the price is greater per pound than for the Seed Leaf, the small yield per acre does not make the crop so profitable, especially in those counties well adapted to the growth of the latter. This, no doubt, is the reason why Havama Sced Leaf is grown in larger proportions in the upper counties of the valley than in the lower ones. In the lower counties the soils produce a wrapping leaf unequaled in fineness by any other grown on the continent.

The Havana is grown to some extent in the upper part of the Housatonic valley for fillers. In answer to a letter addressed to him on the subject, Mr. Perry N. Hall, of New Milford, Connecticut, says of the Havana Seed:
 but bringe a somewhat larger price. It generally swoats to dark colors, and is casily cultivated and harvested.

The largest variety grown is said to be the Barber, a variety produced by making a careful selection of the earliest plants and carefully trimming the seed stalk of all late blooms. This variety is remarkable for the groat size of its leaves, the smoothness of its texture, and the uniformity of its color, and it is highly esteemed for making wrappers. The Podunk has upright leaves, thickly disposed upon the stalk. Another variety of Seed Leaf, called Duck Island, is grown to a considerable extent in the Housatonic valley. It is medium in size, and very flne in texture and fiber. The other varieties mentioned are subvarieties of the Seed Leaf, and are distinguished from it only in the shape of the leaves, and not in the flavor, habits of growth, or uses.

The quality of these different varieties is greatly affected by the character of the soils upon which they grov. Where the soil is a heavy clay loam, the tobacco grows with more thickness of leaf, and has more gum in its tissues, cures a danker coler, and will bear sweating better, but is not so well suited for wrappens, because of its comparative
conrseness of texture. Upon light sandy soil the quality is very fine, but the color is light. By judicious sweating, tobacco can often be changed from a ligltt cinnamon to a dark brown color, in which case it makes wrappers that command the highest prices. A quality of tobacco between the two is very popular, because it both sweats well and supplies a large proportion of wrappers.

Soils near the sea-coast, though in appearance having all the physical qualities required for the production of the finest leaf, Jet often produce tobacco the burning qualities of which are imperfect. This doubtless arises from the existence of the chloride of sodiun, or common salt, in the soil; for it is the result of long observation, both in Europe and in this country, that the use of salt, while it is thought to increase the crop, dimiaishes the buming qualities of tobacco. The soil preferred in the Honsatonic valley is known as a ridgy loam, dark in color, with a small portion of sand. It is intermediate between a light sandy and a loamy clay soil, and is found on hill lands. The tolbacco grown on this soil has all the fineness of texture of that grown upon a light sandy soil, and most of the body, and all the elasticity, strength, and sweating qualities, of that grown upon a clayey soil, and will supply more wrappers than if grown on either the light sandy or the heavy clay soils.

Of the tobacco raised in New England, the best crops will make 66 per cent. wrappers, 25 per cent. seconds or binders, and 9 per cent. fillers; but the inferior crops will show a reduced percentage in wrappers, and a corresponding increase in the other two grades.

It is the impression among many dealers and farmers that the quality of the tobacco has deteriorated during the past decade, but of this there is some donbt. Many maintain, with a good show of reason, that the crop is much better managed now than ever before, becanse buyers exercise more vigilance in the selection of good crops than formerly, and because the houses in which it is cured are better fitted for the purpose. Thero is a small area, about fifteen miles long and three miles broad, in which are included South Wiudsor, East Hartford, and Glastonbury, that is pre-eminently distinguished for its fino leat. The soil is a light yellowish sandy lom, very mollow, made very fertile by the application of manures, moist and warm, and usually deep, but occasionally sandstones of tho Triassic period appear above the surface, these sandstones being ferruginous, sometimes micaceons, and often conglomeritic. The fineness of the sedimentary deposits, the variety of the inorganic elements derived from the slates, traps, granitic, feldspathic, and hornblendic roeks that bound the valley, and the excellent drainage, all combine to make a soil perfectly adapted to the growth of the tobacco-plant. For the growing of tobacco a very small percentage of the land is employed; indeed, in a farm of one hundred acres, three or four acres may be considered the average amount planted.

ROTATION.

In the Connecticut valley all the soils cultivated in tobaceo have been in careful and skillful tillage from one handred to two hundred years or more. The rotation practiced in the ralley is grass several years, after which succeeds tobacco for a number of years, two or three usually, but frequently four or five, aifer which the land is again seeded to grass. It is difficult to have any regular rotation, becanse the local rariations in soil characteristics make some of it peculiarly adapted to the growth of tobacco, while other varieties are better suited to the production of hay, or corn, or buck wheat, or are found more profitable in permanent pasturage.

Grown upon rolling lands of the Housatonic valley, tobacco has a much darker and thicker leaf; but upon freshly cleared lauds it grows coarse, and is destitute of gum and elasticity. Probably one-third of the crop grown in this valley is planted on valley lands and the remainder on slopes and tops of ridges.

MANURLS AND THERR APPLICATION.

The original growth of the tobacco area is said to have been white oak, pine, red maple, birch, and chestmut, Which would indicate soils of medium strength. In the raising of a tobacco crop especially manures always euter as much into the calculation of the cost of production as the labor employed, from tive to ten loads of stable manure being applied to every acre intended for tobacco, and generally from 300 to 000 pounds of srperphosphates or Peruvian guano. In the districts around Hartford the following are the lrinds and the prices of the Farious fertilizers, as well as the amount used per acre:

Kinds.	Cost.	Amount applied por noro.
Stable manuro.	\$0 to \$8 por cord.	5 to 15 cords.
Castor pomace.	\$22 perton.	When used exciusively, 2 tons; less guantity with other fortillaers.
Porurian guano	\$50 per ton.	800 pounds, in connoction with 0 covis of atable maunio.
Superphosphates	\$30 to \$40 per ton.	300 to 500 pennds, with from 5 to \int^{\prime} cords of stable manure.
Bone meal	\$32 to \$40 per ton.	Alwaye used with other fortilizers; not a favorite with tobaceorgrowers.
Tish guano or scrap.	Dry $\$ 35$ to $\$ 38$; half dry $\$ 18$ to $\$ 20$ per. ton.	From 1,000 to 2,000 pounds per aero, always apphod with other fortilizers, not favorito manure.
Pobacco stalks.	\$10 to \$14 per ton........................	When applied exclusively, from tit to 4 tons.
Lime	\$1 50 to \$2 per barrel of threo bushels.	Two barrels, with othor fortilizers.
Lenelyed nahes	20 cents per bushol	Very popular with tobnceo-growers; ¢unntity appliod very vauialle.
Nowton marl	\$3 to \$8 per ton.	Two tons; snia to make tulateco of supatior cuulity,
Stocklridge tobaceo fertilizer.		Used ly some with grod results; 500 pounide per acre.
Sheep manme	\$8 to \$10 per cord	All that can be obtained.

I. F. C. Allis, of East Whately, Massachusetts, in a letter to John L. Hayes, secretary of the National Bonrd of Wool Manufacturers, says:

The cause for feeding so many sheep for their mutton in this valley is the high valne of sheep manure for tobacco-growing, it having the effect on our light soil to produce a dark-colored silky leaf, of good burning quality, suitallo for wrapping fine cigars. This tobaceo burns white, and has a good sweet flavor, perlans owing to the potash it derives from the manure. So valuable do we consider this sheep manure, that we have shipped, since 1870 , from West Albany, from 50 to 60 cords, costing from $\$ 8$ to $\$ 10$ a cord, every spring. On our light soils, called pine lands, after raising crops of tobaceo, 2,000 pounds to tho acre, we have sown wheat, yiolding 30 lushels, plump berry and honvy weight of straw, on land which, withont this dressing of manure, is fit only for white beans. We of late years feal with our sweetest and finest hay, and mix with our corn one-third cottousced meal. By so feeding, our sheep fatton more easily, hoing mone hardy and better conditioned, heside increasing the value of the manure and rendering it more full of plant food.

There is a considernble contrariety of views expressed respecting the effects produced upon the quality of the tobacco by the appliention of the several fertilizers mentioned. In some of the schedules returned to this office from intelligent growers it is strongly stated that heavy manuring is not only necessary to grow heary crops, but that in the heaviest crops is fomd the largest proportion of excellent leaf. Others claim that henvy fertilization, while it adds unquestionably to the quantity produced, yet affects the quality injurionsly as to texture, strength, and silkiness. These contradictory statements can only be reconciled by the hypothesis that the soils in either case are radically different in chemical coustitution. Says one schedule: "Fish guano makes tobacco heary, rongh, and scaly, with bad burning qualities." Others claim that fish-scrap is an excellent manure. The first statement accords fally with that made by Professor Johnson as to the widespread prejudice existing among tobacco-growors to the use of fish or fish grano on tobacco fields. Of the beneficial effects of Permvian guano on tobaceo soils there is 110 discordance of views.

In the Housatonic valley the land, whether sod or cultivated in a previons crop of tobneco, is treated to a heavy application of stable manure, rumning as high as thirty or forty cart-loads to the acre, at a, cost of from 850 to $\$ 60$. Cow-dung is said to hare the best effect upon color, horse-dung, though making a good quality of tobacco, inducing lighter colors. Saltpeter also is applied to improve the quality. All fertilizers, except special manures, are spread broadcast over the land, and are plowed or harrowed in; and without their use it would be considered folly to plant a crop of tobaceo, as the small size of the leaf and the deficiency in gum and other qualities would make the crop exceedingly umprofitable.

In Fairfield county the yield per acre has decreased considerably, but no canse for such decrease is assigned.
In Litchfield county the yield has slightly increased, owing to better cultivation than formerly and higher manuring. One fact in conmection with tobace culture in this county is significant: the tobacco lands have bean enriched at the expense of the corn and grass lands, for all the manure made upon the farm is rescrved for the tobaceo crop. The hay, corn, and other crops have sadly fallen off in yield, and it is a mooted question whether, on the whole, the county has been benefited in an agricultaral point of view by the production of tobace. Tho breeding of cattle and sheep, the making of hay and butter, and the growing of wheat and oats, have all declined since tobacco has become a staple; and, though there is more money handled by the farmers than formerly, the farms are not generally kept up to such a high state of cultivation.

It may be remarked, however, in this comection, that the making and saring of manure all through New England is considered one of the most important operations of the farm. Barus are constructed with eellars, in which muck is spread, to collect and preserve the urine of the animals which feed above, and into this cellar aro thrown all the droppings of horses and cows, which are worked over again and again by the swine that aro permitted free access to the cellars. It being found impossible to make a sufficiency of manure for all tho requirements of the firm, it is often imported from New York city at a cost varying from $\$ 10$ to $\$ 15$ the cord, it cord weighing about 4,500 pounds. Artificial fertilizers are largely used on the tobacco crop, more with a view of giving it an early start than as a safe reliance for carrying it to maturity. Peruvian guano is applied, as also the superphosphates, in connection with stable manure, which act as a stimulant to the tobacco-plant in its early growth, until its dense roots are able to reach out in tufted masses and appropriate the coarser material of stable and other barn-yard manures.

SEED-BEDS.

Burning as a preparation is rarely practiced, and then only for the purpose of destroying the seeds of weeds and grasses. The methods of growing tobacco-plants are like those given in Chapter XX of this report.

PREPARATION OF THE SOIL FOR TOBACCO.

The soil intended for tobacco is rarely broken in the fall, unless it is a heavy clay loam, which needs the ameliorating effects of freezing to make it crumble well. Upon sandy loams the work of preparation begins in the spring. The land receives a heavy coating of barn-yard manure, and is plowed with a turning-plow to the depth of from 7 to 12 inches. It is cross-plowed in May, harrowed, and smoothed. With a "ridger" beds are thrown up from 36 to 42 inches apart and 6 inches high. These are smoothed off at the top, and with a wheel prepared for the purpose are marked for planting at such distances as may be determined upon, these distances varying from 20 to 24 . inches, and sometimes, but notalways, hills are made at the points marked on the ridge for the plants. The longer distances given are for Comnecticut Seed Leaf, the shorter ones for Havana Seed. When it is desired to supplement
the application of stable manure with stimulating fertilizers the land is furrowed out 3 or $3 \frac{1}{2}$ feet apart and 300 pounds of guano or 500 pounds of superphosphates are strewn in the furrow. On this two other furrows are thrown, to make a bed, which, after being smoothed off, is marked for hills. The guano or superphosphates are sometimes sown broadcast over the land and harrowed in before it is marked off. The effect of fertilizers upon the crop is tersely expressed in one schedule as the "diference between a crop and no crop".

Dr. Riggs gives an account in the report of the Comecticut board of agriculture for 1871 in reference to the preparation of soil for his tobacco crop. After the tobaceo is cut and housed in the fall the land is plowed lightly, and $1 \frac{1}{4}$ bushels of rye are sown to the acre. This gets a good start before winter, and in the spring, when he wishes to plow for tobacco, it is 4 or 5 inches high. He then takes what he calls a "smoothing-iron", 4 feet square, made with 2 -inch plank, spiked with railroad spikes to joists 3 by 4 inches, the front end and sides of the implement beveled so as not to carry the enrth along with it. Two or three weeks before planting this is clrawn over the ryo to level it. The soil is fertilized with 300 pounds of guano, which, with the rye, is turned under to the depth of 12 inches. In this condition the land lies until it is nearly time to prepare it for the plants, when he applies about one-third of the quantity of baru-yard manure that would have been put on butfor the rye and guano. This manure, with 400 pounds of additional guano, is spread over the land and harowed in thoroughly. The "smoothing-iron" is then used until the whole field is as smooth as a floor. The land lies in this condition for a few days, until the gumo and manure have become absorbed and incorporated into the soil; then the feld is marked off into rows, aud two furrows are thrown on each mark, making ridges which are 32 fect apart. Hills are made on the ridges from 22 to 24 inches apart, and are planted after a shower of rain with plants the leaves of which are as large as the palm. of the hanch. The yield of his crop varied from 2,200 to 2,400 pounds per acre, although he applied two-thirds less stable manare than he would have done but for the rye which he plowed under.

In New Flaven county, and probably in other counties, the rows for Connecticut, Seed Leaf are sometimes made 4 feet apart, while the plants are set out 2 to 21 feet in the row, the greater width being rendered necessary in seasous of rigorous growth to prevent breaking the leaves in passing through to destroy the worms and to pull off the suckers. It is also believed that wide spaces aro favorable to a more thorough development of the leaves, air and light being necessary to insure a uniform growth and a uniform ripening of all the leaves.

The small area planted in tobacco by each farmer in New England eaables him to plant his crop whenever the plants are large enough to transplant. This is done from the 1 st to the 20 th of June, sometimes earlier, whether timely rains make the ground moist or drying winds exhanst the moisture. Tn the former case, the plants are set rapidly; in the latter, every hill is moistened by artificial means, and each plant is protected from the scorching rays of the sun at midday by tufts of grass or in some other manner. It is considered very important to get a good "stand" at first planting, so that all the plants may grow evenly; otherwise the fields have a ragged look, some plants being small, while others tower above them. The topping and catting are also made inregular, the first plants requiring to be topped and cut several days or weeks before those replanted, and in some years fully 25 per cont, of the first planting is cut off and destroyed by cut-worms. The younger or replanted stalles are often topped to a less number of leaves, in order that they may ripen with the first; but in this case there is a disparity in growth, and often a deterionation in the quality. Under very favorable circumstances the transplanting may be continned witil July 4. After the plants have been in their places four or five days they begin to grow, when the earth should be loosened about them and the surface of the ground kept soft and fine. At least three plowings and as many hoeings are given the plants before they are ready to be topped, which is within from forty-five to fifty days after they are transplanted.

TOPPING, PRIMING, SUCKERING, AND WORMING TOBACOO.
In reference to topping there is the usnal diversity of views. All, however, agree that the plants should be topped as soon as the flower buds generally appear over the field. If the soil has been well pulverized, the blossom bud will not show itself until the plant has developed a large number of leaves; but in dry weather it appemrs when the plant has comparatively few leaves. In topping on rich soils, from twelve to sixteen leaves are left on each plant, and on the Havana Seed variety a much farger number of leaves is left, sometimes as many as twenty or twenty-five; but on thin soils, or on soils not well manured, in very dry weather, only ten or twelve leaves are left on each plant. It is the experience of all good planters that a larger proportion of good wrappers is obtained by topping low, so that every leaf may become of a uniform size: When too many leaves are left to tho stalk the top leaves rarely ever attain their full growth, and all will be deficient in gum and elasticity. No priming is done. Dr. Riggs maintains that "priming", or palling off a few lower leaves, is a great advantage to the plant. The lower leaves are always classed with the inferior grades, being generally ragged, earth-burned, worm-eaten, and bespattered with dirt or sand. Beside, their presence on the stalk prevents the working of the soil near the plant, which is necessary to obtain the best results. Dr. Riggs' practice, which is a very successful one in results, is to top down to a good healthy leaf, and to top low enongh so that the top leaves will attain an equal size with the best of the others. From eight to ten leaves in the most fertile fields, and less in a crop that does not grow so hearitr, is the rule of guidance which he lays down. Nevertheless, but few plonters adopt this suggestion, aud the general average is from twelve to sixteen leaves for Connecticut, Seed Leaf, and from sixteen to twenty-four for Havana
tobacco. The suckers are pulled off as they appear, the best growers rarely permitting them to attain a length of 4 inches. This operation is performed gencrally twice before cutting, first a week after the plant is topped, and again just before it is cut. A few pull off the suckers once only. The work of destroying the worms is done every day, if possible, as no tobacco is so much injured in quality by worm holes as the cigar wrapper. The moths are caught or beaten down with a wisp of fine brush at evening. A few farmers plow their land in the fall, in the belief that by exposing the worms in their chrysalis state to the frosts of winter they will be killed. Tho worms are desstroyed by hand-picking, and sometimes, but not often, by gangs of turkeys.

After the Comecticat Seed Loaf has been topped from two to three weeks, by a careful inspection of the top. surface of the leaf irregular yellow spots, shading off into the general green of the leaf, will be seen. A grainy appearance also becomes visible on the surface, and the leaf becomes somewhat crisp, and will break by doubling. Though not fully ripe, it is in the proper condition to make leaves best suited for wrappers, and to permit it to remain longer in the field would thicken them. Rains at this period injure the leaf by washing away the resinous. substances that give it a satin-like face after it is cured and sweated. Heavy dews and cool nights are favorable for the development of these resinous compounds.

When the Comnecticut Seed Leaf was first grown in the Connecticnt valley it was the custom among farmers to let it ripen fally; but experience has tanght them that its highest perfection is reached about the time the upper leaves. attain their full size. In other words, the time most propitions for cutting tobacco is when the process of expansion ceases and that of granulation fairly begins. This is not the case, however, with the Havana Seed; for unless this variety is permitted to remain until the sweet gums are secreted the aroma for which it is prized and its glossiness. will be lackiug, and it will not occupy no higher standard than a small, thin, wrapping leaf, unequal in size and inferior to the Connecticat Seed Leaf. On this account it is allowed to stand for three or four weeks after being. topped.

OUTIING AND OURING OF TOBACOO.

The cutting of tobacco usually begins in the second week of August, aud continues through that month and often as late as the 10 th of September. When planted upon warm, sandy soils, tobacco will mature from one to two weeks earlier than when planted on a clayey loam. While the latter will not matnre so rapidly, it has more body and will cure up darker in color-a thing very much desired by the tobacco planters for two or three years past. The timo selected for catting is when the dew is off the leaf and the sun not too hot, from three to six o'dock in the afternoon being considered the best time. If cat when the dew is on, it breaks more easily, and dirt will adhere to the surface of the leaves that como in contact with the gromnd. A sunburned leaf, it may bo well to add, is one whose juices have been dried out, in whole or in part, by the heat of the sun. Although perfectly green in color, it will crumble to the touch, and though it may become pliant, the green of the leaf never disappears if put in the shed. One method only will remedy in part this evil, and that is to let the sunburned plant take the dows for several successive nights.

Tho instrument employed for outting is a hatchet, a hay-knife, or a saw, the latter being preferred, because, like the hatchet, it does not jar the plant. The plants are grasped about the center of the stalk with the left hand, and with the saw, hatchet, or knife in the right hand they are severed within an inch or two of the surface and laid back upon the row, and, after they are somewhat wilted, are taken by other hands and speared about 6 inches from the butt on a lath. From four to six plants are put upon each lath, unless they are very small, when a larger number may be pat on. For this purpose a "horse" is used, represented in the following eut:

The spear has a socket, by which it can be fastened to the lath; and as fast as the laths are filled they are hungupon a frame on a wagon and are hauled to the curing shed, or, as is the practice with many, are put upon scaffolds in the fields, constructed with carpenters' trestles, as shown in the illustration. If taken to the sheds at once, the doors.
are left open until the tobacco is thoroughly wilted and the leaves hang perpendicularly. Before the laths are put in place on the tiers in the shed the plants are carefully arranged on them, giving to each plant an equal amount of space. These are then pat upon the tiers, 6 or 8 inches apart, filling the top tiers of the shed first, and working downward until the whole shed is filled. The tobacco is carried to the barn on wagons having a frame nearly 4 feet wide, or just wide enough to catch the ends of the laths, and high enough so that when a stick of tobacco is hung on the frame the tails may not tonch the bottom of the wagon bed. These laths are 14 inches wide and five-eighths of an inch thick. It was a practice, pretty generally followed in the Connecticut valley a few years ago, to tie the plants to poles with twine, these poles being 12 feet long. The plants were tied on alternate sides, from 9 to 12 inches apart on a side, making from twenty-four to thirty-two to the pole, as illustrated.

Some few farmers still adhere to this method of honsing, and discard the lath and spear altogether. While it may require a little more time to harvest tobacco in this way, it is asserted that the number of leaves damaged is not so great. It is also said that the amount of tobacco injured from polesweat is less, ass each plait, when tied to the pole, has its distance distinctly marked, and, as the poles are put from a foot to 15 inches apart, currents of air can circulate more freely botween them. Hanging in this manner, however, is a very tedious process, and though it may have some advantages over the spear and lath system, the greater care and the longer time demanded, at a period when time is most valuable to the tobacco-grower, has to a considerable oxtent brought it into disuse.

The character of the sheds or barns has been very greatly improved within the last decade. For a loug time tobacco-growers utilized the stock barns, cattle-sheds, and other outhouses for curing tobacco; but much of it was injured by winds aud undue exposure in damp, rainy weather, and in other ways. Judicions economy suggested the building of houses for the curing and handling of the crop, the usual size of these houses being 24 feet wide, from three to four tiers high, and as long as the necessities of the crop might demand. To hang an acre of tobaceo requires a house 24 feet wide, 30 feet long, and three tiers high, or the same width, 24 feet long, and four tiers high. It is easy to estimate from this the length of the building required to honse a crop of tobacco: The distance between tiers varies from 4 to 5 feet.

Havana Seed tobacco may be safely housed, with tiers $3 \frac{1}{2}$ feot apart, in perpendicular distance.
 There are two ways of constructing those sheds, one by a series of bents placed 12 feet apart. The accompanying illustration will show the manner in which these bents are constructed.

The posts rest upon low rock pillars, in place of sills, and the lower girders are movable, so that they may be taken out for the passage of a wagon.

A few barns are constructed 36 feet in width; but they are objectionable, from the fact that the midde range is not so well ventilated, and there is greater danger of pole-burn.

Many sheds are two or three hundred feet long, the length being always regulated by the size of the crop.
The poles upon which the tobaceo is hung are pat from bent to bent. If the tobacco is tied to the poles, a greater number will he required; bat if laths are used, seven poles ouly are necessary between each two girderg connecting the posts in a shed 24 feet wide, the lateral girders connecting the bents supplying two othors.

The other method of constructing sheds is to frame two or three girders, according to height, into the posts on all sites of the building, the first 5 feet above the ground, the second 9.2 feet, and the third 14 feet, the latter on the sides being used also to support the rafters. This gives a space of $4 f$ feet for each tier, but this distance should probably be increased to 5 feet for very long tobacco. Upon a line of posts along the center of tho building, parallel with and 12 feet from the sides, are framed girders, corresponding with those on the sides, for the poles, 12 feot in length, to rest upon, one end on these, and the other on the corresponding girders on the sides. Ventilators are put upon the top of the roof. Better results are said to be obtained by having a monitor roof extending the whole length of the building.

In the case of a monitor roof, the building is raised a foot or more above the ground, and drop-doons are made for the openings below and for the monitor roof above. When these are opened a constant dranght of air passes from bottom to top, and the tobacco is cured with a much smaller proportion of house-burn than when perpendicular air-openings are provided.

Cellars to the best sheds are now prepared to be used as stripping-rooms and for bringing and retaining the tobacco in proper condition. Sheds which have recently been erected cost from $\$ 300$ to $\$ 1,000$; sticks, $\$ 3$ per thousand.

The following is the elevation of a model barn or shed for tobacco, erected by G. W. Mitehell, of south Britain, Connecticut. This bann is 60 feet long, 32 feet wide, and 27 feet in height, and holds six tiers of tobacco, beside a small tier in the ridge of the building:

OURING TOBACCO.
The dampness arising from the ground is supposed to exercise a beneficial influence in the curing process, and for this reason many prefer sheds with dirt floors. At every three or four feet vertical doors are made in the sides of the sheds, and these are opened or shut, as the necessities of the tobacco require. The rule governing this matter is that the tobaceo slall become damp at least once a week. If the weather is rery moist, the doors are closed to prevent pole-sweating; if it is very dry, so as to cure the tobacco too rapidly, the doors are closed and the floors dampened. The periodical dampenings cunse the juices to permeate the leaf and insure a miform color; but if subjected to too much moisture, there is a tendency to mold, and the texture of the leaf is impaired by the excessive absorption of water, which, when it evaporates, carries away the oils that give it softness and silkiness. The most difficult problem in wet weather is how to prevent injury from these sources without the use of fire, the practice being to close the sheds securely and keep out as much moisture as possible.
G. W. Mitchell, of New Haven comty, says in relation to the ventilation and curing of tobacco:

Tho openings should be made at the top of each tice of tobncoo horizontally, instead of perpendicularly, as the old style fs. The usual method has been to put a pair of strap-hinges at the top of the door, one foot wido, and open at the lower end; luta much bettor plan is to lave the doors open lengthwise of tho building, so that the air will pass throngh hetween the tiers of tobaceo. They should also open at tho bottom and have a ventilation at the top, so as to have a circulation from bottom to top. The building should bo so constructed as to be shat up tight in very dry or windy woather. Give plenty of air for two or three woeks after it is first honsed, thon let it cure slowly by closiug the doors during the day and opening them at night, so that the tolvacco may receive moisture. This will give a uniform color.

Some prefer to keep doors open day and night for two weeks atter hanging, that the dampness of the night may better equalize the dryness from day opening only.

The course pursued in curing has been changed to a considerable degree during the past three or four years. When light wrappers were in demand the cloors of the sheds were thrown open during the day and closed at night, but since dark wrappers have come into fashion the doors are opened at night and shut during the heat of the day; for it is a generally accepted opinion that light and heat, by accelerating the process, make a leaf light in color. Peruvian grano is thought to favor the making of dark colors, and has been extensively employed in the production of the crop, and gypsum, sprinkled on the plant while growing, will darken the colors. Tobacco, when thick, always cures up a darker color. Thin leaves, very fine and delicate, are always inclined to cure up light, colors, and require from ten to twelve weeks for the tobacco to cure fully. The existence of white veins in the leaf oceurs under circumstances sometimes seemingly opposite. By some they are believed to be cansed by long continued dry weather before and after cutting; by others, as due to any check in the growth of the plant, whether from lack of manure, or cultivation, or drought, or too mach water; and some think they are caused by the lack of some organic or inorganic substance in the soil. All that can be said with certainty is that they do occur, very much to the injury of the leaf for wrapping purposes. As a general rule, the product from a field well prepared, well fertilized, and well cultivated, planted in good season, the plants properly topped and kept free of suckers, will show, when cured, very fow white stems.

POLE-SWEAT.

Damage from pole-sweat during a favorable season for curing is very small; but the years 1872 and 1878 are memorable among the tobacco-growers of New England from the large amount of tobacco injured in this way. The weather throughout the curing season of those years was damp and foggy, and the buildings, as a general thing, were not constructed so as to have the tobacco under control. The consequence was that a large proportion of the crop was lost, or was so badly damaged that the price was greatly reduced.

The best protection against pole-sweat in wet weather is tight sheds and plenty of room, frequent airing during dry weather, and the sheds closed tightly during long seasons of wet woather. In the Seed Leaf district polesweated leaves are thrown away or are used as a fertilizer.

ASSORTING, HANDLING, AND PREPARING TOBAOCO FOR MARKET.

When the leaves and stalks are completely cured, so that no green is visible, the tobacco is taken from the laths, and the leaves are stripped off and are either tied into hands of 12 to 20 leaves or bormd with twine into bundles weighing from 10 to 40 pounds. In this condition its is delivered to dealers, who pay a certain price agreed upon for the crop through.

Dark tobacco, made so in the curing process, will command, crop through, from 3 to 5 cents per pound more than crops of light color, though the latter may have the same texture, fiber, and length. Local dealors, who buy djrect from the farmers, careftully assort the tobacco, classify it, pack, sweat, and sell it to jobbers.

The quality of the crop is determined by the wrappers. If the proportion of wrappers as compared with other grades is large, the price will be correspondingly high, tho quality, size, texture, and colon of the wrapper determining its price. A large, coarse wrapper is not so desirable as a smaller, but fine one; nor is a fine wrapper of bad color prized as highly as one coarse in texture but of a uniform color. The best wrappers are characterized by fineness of fiber, largeness of leaf, uniformity of color, and a satin finish, are free from white veins, and have an elasticity and strength of leaf sufficient to bear the tension required in wrapping cigars; the seconds are leaves slightly injured, but may be used for the inside wrappers of cigars. Mutilated, worm-eaten, and pole-sweated leares, and those injured by fat stems, are used for fillers. In a good crop, well cured, there will be about the following proportion of each grade: Wrappers, 60 per cent.; seconds, 28 per cent; fillers, 12 per cent.

The proportion of long and short wrappers is variable. If the crop is planted at the same time upon land of uniform fertility, there will be only one grade of wrappers; when, however, the crop is planted at different times, or upon soils of unequal fertility, the wrappers are put into two grades. At the time of assorting, the tobacco, unless already tied into hands by the farmers, is made into bundles of from 18 to 24 leaves each and bulked down in two courses, the heads being turned outward and the tails overlapping about 6 inches in the middle, the idea being to expose the heads so that they can dry out. The ends of the bulk are usually protected by boards nailed to upright pieces, as represented in the diagram on page 254. Bulks are made on a temporary platform raised a fow inches above the ground, so that the air can circulate under them, are 4 to 5 feet wide, and of any length desired, the layers of tobacco alternating on each side, and are built up to any height desired, usually, however, about 4 feet. Two bundles are laid down, one at a time, heads out, until a course is run on one side of the platform. A similar course is run on the other side, the tails lapping from 4 to 6 inches, to equalize the height in the middle of the bulk. When bulked, the tobacco is in a moist and pliant condition. The completed bulk is covered with blankets and weighted down for a few days, when it is ready to be packed in boxes.

A cord of rich tobacco, well packed and weighted, will make a ton. Sometimes the planter, when he desires to put the tobacco in casks, assorts and ties up in hands of suitable size as fast as the leaves are picked from the stalk, the inferior or filler leaves being taken off first, the binders next, and lastly the wrappers.

Dealers examine the crop very thoroughly before buying, and even when it is growing agents ride from farm to farm to examine the crops in the fields, the culture, size, amount of worm-caten, rust, regularity or irregularity of the crops being all noted. When the crops are housed, these agents visit the sheds to see that there is no polesweated, wind-shaken, or weather-beaten tobacco, and also to examine the uniformity or diversity of the color; and

after the leaves are picked from the stalks there is frequently another examination, to note its condition, so that by the time the crops are ready for market the dealers are as familiar with their quality as the farmers themselves. This vigilance on the part of dealers has had a good effect in stimulating planters to handle their orops with greater care.

It is exceedingly important to have the tobacco in a proper degree of pliability when it is packed; for if too dry, great damage is done to the leaves by breakage. The best wrappers may be reduced to the grade of fillers by handling when dry. On the other hand, too much humidity in the leaf will produce a formentation so excessive as to destroy the vitality of the tobacco and indace a mold, which imparts to it a disagreeable odor. Good judgmentis required in this stage. If bulked in very cold weather, the amount of humidity in the leaf is often greatly underestimated, and if warm weather supervenes will endanger the tobacco. The plan adopted by the best managers is to see first that the stems or midribs are fully cured; that they do not hold a disproportionate amount of moisture as compared with the leaf. Should the leafy part be very dry and the stem very moist, there is more danger of injury from excessive fermentation than if the conditions of the leaf and midrib were reversed. The proper condition is to have the leat soft and pliant, and the midrib just sufficiently moist to handle without breaking.

The usual date of delivering tobacco to dealers is from December 1 to April. A very small proportion of the crop is now packed by the planters, and damp days, or at least days in which drying winds do not prevail, are selected for delivering the crop.

For wrappers, the boxes are 3 feet 8 inches long and 28 inches square at the head; for seconds, 3 feet 3 inches. long and the same size at the head as for wrappers; fur fillers, 3 feet.Iong and 28 inches at the head. These boxes are made of white pine. Boxes for wrappers cost $\$ 125$; for seconds, $\$ 120$; for fillers, $\$ 110$ each. In these boxes the tobacco is packed with heads resting against the ends. The quantity of each grade packed in a box is:

wrappers, 400 pounds; seconds, 350 pounds; fillers, 300 pounds; and it requires some pressure on the tobacco to get the quantity mentioned in the boxes. This pressure is generally applied by a double-lever press with a platform resting upon wheels, so that it can be readily moved to different parts of the building. A yoke crosses the case and works in racks, two on a side, which are attached to the levers. The accompanying out will gire a good idea of this simple press.

About 200 pounds are first packed in a box and pressed down; then the box is again filled and pressed, and this is continued until the requisite number of pounds have been put in each box.

SWEATING TOBACCO.

After being properly packed, the tobacco is ready to go into the "sweat", or fermentation, which begins as the weather grows warm and continues for many weeks, and during this period the tobaeco becomes warm, reaching a temperature of 100° F., and sometimes more. All cases are marked with the weight, quality, the name of
grower, etc. During the process of sweating the boxes are piled on one another, generally on their sides, but are never exposed to the rays of the sun. A well-plastered or ceiled room is prepared for this purposo, the heat generated being at times so great in the sweating rooms as serionsly to affect plastered walls. The process of sweating is to tobacco what fermentation is to wine. It ripens it and prepares it for use. It perfects it in color, improves the flavor, subdues the acrid or pangent taste, increases its burning qualities, and gives it a shining, oily surface, which is called "satin face". All tobacco, however, does not go through this process well, as all wines do not ferment well. Some of it comes out with a lifeless appearance. Whether this is due to the want of essential oils, or arises from the improper condition in which it is packed, is a question not fully determined.' Tobacco, like wine, will often go through a second fermentation the ensuing year with an improvement of quality. No artificial means further than "spraying" are used for "ordering" the tobacco before packing. The amount injured by oversweating is small, and will not exceed 1 per cent. The greatest loss is in weight, which amounts to ten or fifteen pounds in a hundred, varying with the lightness or heaviness of the tobacco. After it has gone through the sweat securely, which takes from three to four months, the ends of the boxes are opened, and samples are drawn from different layers in the boxes by inspectors, who, for a fee of 35 or 40 cents per case, varying with localities, guarantee' the samples to represent the average quality of the box. A dealer may sample his own goods by giving a guarautee that the samples are a fair average. Theso samples aro labeled and carefully packed in boxes, and all sales are made by them. There are many towns where warehonses are erected and some business is done; indeed, almost every village in the tobacco-growing districts does more or less business in tobacco.

PRIOES OF TOBACCO.

The average price of the crop of 1879 in the several counties and districts was as follows: New Haven comnty, Connecticut, 14 cents; Middlesex, Hartford, and Tolland counties, Comnecticut, 10 cents; for the Housatonio valley, 15 cents; Hampden county, Massachusetts, 9 cents; Cheshire county, New Hampshire, 9 cents. For the different grades the following prices prevailed:

Conatios.	Wrappors,	Soconds.	Fllers.
Now Hrven, Connoctleat,	Oenta. 15 to 25	Dents. 8	Oents. ${ }_{5}$
Middlosex, Martford, and Tolland, Connectiont...	15 to 25	5 to 0	8 to 4
Hampden, Mnseaphusetts.........................	15	8	4
Hampshire, Mnssnchusetts.	13	\checkmark	5
Cheshire, Now_{χ} Tampshire.	13	5	5
Housntonio valley	15 to 25	0 to 8	4 to 5

It will be seen that the average price of the product in Middlesex, Hartford, and Tolland counties is higher than in any other counties in the Comeecticut valley, and yet the price of wrappers is no higher than in New Haven countr, and for inferior grades hardly equals the upper counties of the valley. This apparent anomaly is, however, of easy explanation. The three counties of which Hartford forms the center have a much larger proportion of fine wrappers, amounting to 66 per cent. of the crop, while the other counties have a larger proportion of inferior grades. This would make the average of the crop in the first district named greater. Beside, in the upper part of the valley, a larger proportion of Havana is raised, the seconds and fillers of which bring a much higher price in the market than the seconds and fillers of the Connecticut Seed Leaf.

As a general thing, the tobacco of the same variety grown in Massachusetts, New Hampshire, and Vermont does not sell as high by 25 per cent. as that grown in the Hartford district.

The prices paid farmers for crop through of Connecticut Seed Leaf in the Housatonic valley from 1870 to 1879 are as follows:

Yoar.	Worst crops.	Best crops.
	Conts.	
$1870 \ldots \ldots$	10	Cents.
$1871 \ldots \ldots$	5	80
$1872 \ldots \ldots$	5	20
$1873 \ldots \ldots$	25	
$1874 \ldots \ldots$	5	12
$1875 \ldots \ldots$	10	25
$1870 \ldots \ldots$	5	18
$1877 \ldots \ldots$	5	15
$1878 \ldots \ldots$	5	15
$1879 \ldots \ldots$	5	10

Havana began to be planted in the Housatonic valley about the year 1875, and the increased inquiry for it in 1877 induced a considerable planting, the farmers who had poor, thin soils finding it to be much more profitable than the Connecticut Seed Leaf; but upon soils of marked fertility, generally, but not always, the latter variety is preferred.

COST OF TOBACCO PRODUCTION.

In the Flartford district, composed of the counties of Middlesex, Hartford, and Tolland, the price of the best tobacco lands will average $\$ 200$ per acre. The rate of wages during the active farming season, usually from the middle of March to the middle of November, is $\$ 15$ per month for men; by the day, in summer, from $\$ 1.25$ to $\$ 150$. At the period when the ravages of the horn-worm are most destructive it is frequently necessary to employ extra hands, and it is always necessary to do so in harvesting. The following estimate of the cost of cultivating, handling, etc., one acre in East Hartford will be found very nearly correct:
Making seod-bed $\$ 250$
Soed 25
Weeding and attontion to plant-bed. 150
Rent of land (interest on value) 1200
Stable manure, six cords, at \$8. 4800
Three hundred pounds guano, at $\$ 56$ per ton 840
Cost of applying manure 400
Plowing land twico 400
Harrowing and ridging 300
Makiug hills 150
Drawing and setting plants 400
Cultivating and hoeing tirree times, onoh $\$ 3$ 900
Topping, worming, and suckering 1500
Harvesting 1200
Taking down, assorting, and stripping 2000
Bulking 100
Use of bain, laths, wagon, ote 1200
Delivering to market 300
Total 16115

A plan very generally adopted by the planters of the Connecticut valley is to contract to pay 3 cents per pound to the laborer for all the work necessary to be done in cultivating and handling the crop until ready for market, the landlord furnishing land, team, implements, barns, etc., and delivering the crop to market. The use of team, implements, etc., is estimated to be worth 1 cent per pound. The cost of producing a crop of one acre on the basis of this contract is :

Labor for one acro	$\$ 6000$
Uso of team and implemonts	2000
Manure (average amount), six cords, at \$8	4800
Three hundred pounds gaano, at \$ $\$ 56$ per to	840
Use of shods and laths.	1200
Rent of land (interest on investment)	1200
Delivering crop to market	300
Total.	16340

When twine is used, $\$ 1$ should be added to the cost. This makes the cost about the same, whether the labor is employed by the pound or in the ordinary way. Both these estimates have been made on the basis of a yield of 2,000 pounds per acre, which is understood to be the yield of the best crops for the best portion of the Connecticut valley. The first estimate makes the cost $\$ 806$ per hundred pounds, and the second $\$ 817$. Assuming the average yield per acre of the Connecticut valley to be as the Tenth Census indicates, 1,620 ponnds, the cost per hundred pounds to produce it would be, on the basis of the first estimate, $\$ 995$, and on the basis of the second estimate $\$ 10$ 09. The average value per acre for the whole of New England being $\$ 21719$, from which deduct cost, $\$ 10227$, would leave a net profit per acre of $\$ 5492$.

In the Elonsatonic valley the cost of raising tobacco does not vary much from the cost in the Connecticut valley. Labor costs from 3 to $3 t$ cents per pound. The whole expense for an acre of Oonnecticut Seed Leaf grown in the Housatonic valley is given as follows:

Dr. Dr.		
Lalor		\$00 00
Manure.		5000
Use of land (interest on investment)		1200
Use of team aud tools...		2000
Use of barn and laths.		1000
	Cr.	1.5200
By 2,000 pounds of tobacco, divided as follows:		
1,200 pounds, at 25 cents $\$ 300.00$.		
666 pounds, at 10 centa ... 66.		
134 pounds, at 5 cents $6 .$.		
		37330
Deduct cost....		15200
Profit.		22130

The Havana tobacco, though requiring the sane amount of expenditure per acre for manure, rent of land, ete., would probably require $16 \frac{2}{3}$ per cent. more labor to cultivate, in consequence of the increased number of plants to the ncre. Connecticut Seed. Leaf, set in rows 32 f'eet apart and the plants 27 feet asunder, will give nearly 5,000 plants (4,078 accurately) to the acre. Havana is set in rows 3 feet apart, and the plants at the distance of 2 feet in the rows, which gives 7,260 plants to the acre, or 2,282 plants in excess of an acre planted in Seed Ieaf. It involves as much labor to set, worm, sucker, cut, and spear a small plant as a large one, and the estimate of 168 per cent. of labor additional does not appear too great. On this basis the cost of growing Havana tobnceo will be as follows:

Dr.

Cost per pround, 12 cents.
A veraging the cost of production per hundred pounds of the two varieties, and it will be $\$ 980$; but in both the estimates of yield the best tobacco soils only are considered. Taking the average yield of the whole valley at 1,328 pounds and the arerage price at 1.6 cents, the money value for each acre cultivated would be $\$ 21248$, from which deluct the average cost of production, and it would leave an average profit of $\$ 3234$ per acre.

It has not beeu satisfactorily settled which variety is the most profitable to plant on good soils. The Connecticut Seed Teaf always grows well, and the Havana always meets with ready sale, often at prices greatly beyond expectation; but the rasiag of Connecticut Seed Leaf appears to be accompanied with less uncortainty, the yield per acre and the prices received for the product being more uniform. The average number of acres allowed to a hund is from 21 to 3.

Good tobacco lands in the Housatonic valley are worth from $\$ 50$ to $\$ 200$ per acre, according to the distance from railroads, and sometimes, when convenient to transportation, they will rent for $\$ 50$ per acre for a single year, the landlord agreeing, however, to farnish the manure for the tobacco crop. Labor commands from $\$ 18$ to $\$ 20$. and board per month. From $\$ 1$ to $\$ 125$ and board is paid for men by the day in summer. Dealers pay for best packers $\$ 2$ per day, and give 1 cent per pound for assorting tobaceo and tying it into hands ready for the packer.

In Hampden county, Massachusetts, the prices of the best tobacco farms are pat at $\$ 150, \$ 200$, aud $\$ 200$ per acre, according to location and improvements on the farm. These lands rent for $\$ 50$ per acre, or one-half the crop, the landlord in the latter oase furnishing everything except labor. Stable manure is worth from $\$ 5$ to $\$ 8$ per cord. The wages of labor are from $\$ 15$ to $\$ 18$ and board per month. The following estimate of the cost of growing a good crop of tobacco was made by Charles F. Fowler, of Westfield, Hampden county, Massachusetts:

DR.

Cost of making secd-bed . $\$ 200$
Weeding and attontion to seod-bed 200
Rent of land (interest on prico). 1200
Stable manure per acre. 0000
Guano or superphosphates. 1500
Cost of applying fertilizers 1200
Cost of breaking one acre twice. 400
Harrowing, lining out, ridging, and hilling 100
Drawing and sotting out plants 450
Cultivating and hoeing. 1200
Topping, worming, and suckering 1200
Harvesting 1500
Taking down, assorting, and stripping 2500
Bulkingr 200
Use of barn, laths, wagon, ote. 1000
Delivering crop to market. 300
2,000 pounds tobaceo, at 14 cents $\$ 28000$ 19450
Deduct cost
Deduct cost
Net profit. 8550

This will make the cost per hundred pounds of Seed Leaf \$972. Mr. Fowler, who made this estimate, says in conclusion:

This is not intended as an estimate for an average crop, but for n good crop. By the application of less manure, the cost and also the profits would have been reduced.

He further says: "It, requires from sixty to seventy days in most favorable weather to cure the crop." This county reports the largest yield per acre for 1879 of any county in the United States, it being a little over 2,127 pounds.

George II. Gaylord, of Hampshire county, Massachusetts, estimates the value of good tobacco farms at $\$ 300$ per acre; value of stable manure in winter, $\$ 8$ per cord; in spring, $\$ 10$ to $\$ 12$. The wages of labor are $\$ 25$ per month without board, or $\$ 125$ per day. Contracts are sometimes made to pay a laborer $\$ 80$ per acre for doing all the work required on a crop of from $2 \frac{1}{2}$ to 3 acres of tobacco, or the crop is divided, the landlord being at all expense, except labor. The itemized statement of the cost of producing an aere of tobacco is as follows:

Cost per pound, 10.9 cents.

It will be observed that in two items, that of making seed-bed and that of taking down and stripping the orop, there is a wide difference in the two estimates. This discrepancy is easily reconciled, for donbthess in the estimato made by Mr. Fowler the land for the seed-bed was burned over, which involved some expenso, and this appears further from the fact that in the item for weeding and talking care of the bed the charge is much less in his statement than in that of Mr. Gaylord's, thus making the cost of seed-beds approximately equal. The wide difference in the cost of stripping arises from the fact that in the latter case it was tied up in large bundles without assorting or tying in hands. The other items approximate as closely as could be expected.

In Oheshire county, New Hampshire, $\$ 100$ per acre is the price for the best tobacco farms. Stable manure eosts $\$ 150$ per cart-load, twenty cart-loads making seven cords, or about $\$ 430$ per cord. Labor is worth $\$ 20$ per montly and board. The cost of cultivating and marketing an acre of tobacco, as estimated by George H. Gilbert, of Keene, is as follows:

Dr.
Cost of making scod-bed * 100
Cost of seed 25
Weading and attention. 100
Ront of land (interest on price) 700
Stable manure, per acre 3000
Guano or superphosphates 1200
Cost of applying fortilizers. 1000
Cost of brealking an acre twico 500
Farrowing, lining out, aud lilling 500
Drawing and setting out plants 500
Cultivation and hoeing. 1000
Topping, worming, and suckering 500
Harvesting 1000
'Taking down, assorting, and stripping 800
Bulking 400
Uso of barn, laths, wagon, ote 600
Delivering crop to market 400
\qquad
Deduct cost
12325

Cost por pound, 6.16 cents.
Some of the returned schedules put the cost of production at from $\$ 10$ to $\$ 1250$ per hundred pounds, which is probably a little higher than the facts would justify for the Connecticut Seed Leaf. It comes, however, very near the true cost of growing the Harana Seed variety, which yields only from 1,200 to 1,500 pounds to the acre.
sometimes tobacco is cultivated on the so-called "share system". These contracts are varied sometimes by the landlord's agreeing to feed the team and to furnish implements, the laborer feeding himself, or paying board in all cases where he works on "halves". The quantity which one man can successfully manage is estimated to be $2 \frac{1}{2}$ acres.

In the warehouses the price paid assorters is $\$ 2$ per day; packers, $\$ 150$ per day, both being classed among skilled laborers. A competent assorter must have an eye for color and a knowledge of grades, which can only come from long experience. The packer should be acquainted with the proper condition in which to pack tobacco, so that it may go through the sweat with safety, and should be able so to dispose the bundles in the boxes that when drawn they may come out straight, with smooth leaves. As a general thing, laborers who know how to manage a tobacco crop successfully command higher wages than ordinary farm hands.

In consequence of the increased skill exercised in the management of the crop, the proportion injured by pole-sweat and excessive sweating is becoming less and less each year, and the last may be said eveunow to be inappreciable. The former is becoming more rare as the sheds are improved and new methods of ventilation are adopted.

QUALITY OF TOBACCO GROWN.

The quality of the tobacco grown in the Comnecticut valley near East Hartford stood for many years without a rival as a wrapper. It is a very handsome, showy tobacco, and is very attractive when new. More recently, however, its light color has reduced its rauk; butits fine burning qualities and sweetness of taste, added to its silkiness of leaf, still make it a formidable competitor in the mankets.
"New England tobacco," or that grown in Massachnsetts, Vermont, and New Hampshire, is heavy, with, comparatively coarse stems and fiber, and is altogether of a lower class when compared with the best Connecticut leaf or the Pennsylvania tobacco. It is deficient in oily sulstance, and does not sweat to a good rich color.

The points around which the finest Connecticut Valley tobaceo grows are East Eartford, Windsor, Suffield, and Warehouse Point. There is a marked difference observed between the tobaceo grown on the east and the west sides of the Connecticut river, the former growing a light-colored, fine tobacco; the latter, a tobacco of more substance, but not so delicate in fiber. Sandy soils are more common on the east; clayey soils on the west.

It is generally conceded, both by dealers and by manufacturers, that the fimest tobacco for cigar wrappers comes from the Housatonic valley, having all the silkiness of texture and burning qualities of the Comecticut Valley leaf and all the desirableness of color of the Pennsylvania Seed Leaf. In elasticity of leaf, in fineuess of face, and xichness of color it stands unvivaled, and brings a higher price in the market than any other seed leaf grown in the United States. The tobacco of the Connecticut valley is of fme fiber, has admirable burning qualities, and is of good size, but the color is generally too light to suit the present requirements of the market. The Connecticut Valley tobacco has at delicate, sweetish taste, and burns with a solid, yellowish ash, which presents an oölitic surface, considerably reduced in size from the original cigar. The tobacco grown in the Housatonic valley also leaves a pleasant taste, and burns with a similar ash.

The following statement shows the production, acreage, yield per acre, value of crop in farmers' hands or in primary markets, value per pound, and value per acre, of the tobacco crops of New England for the years 1876 1877, 1878, and 1879, only the figures for the latter year being from census returns:

Year.	Production.	Aoreage.	Yield por aore.	Value in primary markets.	Talue per pound.	Value per acre.
	Pounds.		Pounds.		Oents.	
1876.	18,709, 108	10, 884	1,727	\$1, 904,456	10.60	\$181 33
1877.	18,458,578	10, 680	1,727	2,030,443	11.00	18007
1878.	18,300, 175	10,720	1,707	2,050,782.	11. 25	10204
1870.	19,717,808	12,109	1,610	2, 640,982	18.44	21719

All the tobacco grown in New England does not enter into the commerce of the country, a small portion being taken by local manufacturers, and another small part of it being retained for home consumption. This will account for the discrepancy between the receipts at the principal markets and the returns of the census enumerators.

Chapter XX.

GENERAL INFORMATION NOT SPECIALLY GIVEN IN THE REPORTS ON THE CULTURE AND OURING OF TOBACCO IN THE SEVERAL STATES.

SEED.BEDS.

In Virginia, Kentucky, Tennessee, and in other sonthern tobacco-growing states, the methods of preparation are substantially the same, such variations from the general plan as do exist deponding altogether upon local conditions.

The site for a plant-bed most nsually preferred is that having a southern or southenstern exposure, that it may have the genial and fructifying warmth of the sun in early spring, so that the plants may be set out before the hot weather of summer. If the bed can be located near a stream, fogs will quicken the germination of the seed and the growth of the plants. Probably the best possible location is on a gently-sloping hill on the north side of a ruuning stream, but sufficiently elevated to be above any danger from overflows. In such situations plants are often two weeks in advance of those in beds prepared on level land. The timber growth may be of any kind that denotes fertility of soil.

In Yirginia, Kentucky, and Tennessee a dark-colored, almost a black, soil is preferred, because it is more readily warmed by the rays of the sun, and retains the heat much longer than light-colored soils. For the same reason a slight intermixture of gravel will be of advantage. In North Oarolina, although many planters prefer a black soil, free from sand or gravel, the majority of fine-tobacco growers choose a sandy soil, such as that in which the plant is to be grown to maturity.

In Virginia, except where wood for the purpose is scarce, in North Carolina, Kentucky, Temnessee, Missomi, and in many tobacco districts in other states, the practice of burning over the seed-beds is genoral. The burning is not slight, as in the Connecticut valley, where this appears to be done simply'to destroy the seeds of weeds and grass, but the soil is burnt until it shows a reddish tinge. Several methods of burning are practiced. In all cases the wild growth is first cut off with an ax and not dug up. Leaves and trash are carefully raked off from the bed space. If the intention is to burn with logs, skids or poles are laid down four feet apart and a layer of logs and smallor wood, four or five feet wide, is built upon the skids, the object being to keep the wood from resting on the ground, so that the heat may have full play upon the surface of the soil. The fires being set, they are kept burning for two hours or more, when the whole layer is moved forward by hooks, so as to cover another space of the intended seed-bed ; and this is kept up until a plat is burned as large as desired. Another method is to lay down brush and bits of wood at one end of the bed space until the pile is five or six feot high. Against this pile brush from treetops is placed in a position nearly vertical, inclining against the foundation sufficiently to provent its falling back on the bed; and this is continued until the full space intended for the plant-bed is covered. A platform of wood is then put on top of the brush, and the fire set on the windward side. Still another plan is sometimes adopted, which saves the hard labor of covering the brush with heavy wood. After a width of eight feet of the bed space has been covered with brush phaced in a nearly vertical position, logs or sticks of wood eight feet long are set on end, leaning against the brush. Eight feet more of brush is followed by another layer of wood, and so on until the whole space is covered. When fired the brush burns out quickly, but not before it has set the wood on fire, which, falling all in one direction, covers the whole surface with hotly-burning wood. Old broken rails, thrown aside in resetting fences, and old logs from dilapidated buildings are preferred, because they are thoroughly seasoned and burn freely.

When the bed has cooled off it is generally dug up with grub hoes or worked lightly and closely with a colter plow. The ashes should be left on the bed, and in working the soil it should be reversed as little as possible. All grubs, roots, and large stones should be removed, and the surface soil should be worked several times with hoes or rakes until it is perfectly light and mellow. When in proper condition, marlss are made four feet apart to regulate the sowing of the seed. About one large heaping tablespoonful is enough to sow one hundred square yards. The seed is mixed with ashes or plaster, one half of the mixture being sown as evenly as possible over the entire bed, when the other half is sown in the same way. This is in order to secure a more equal distribution of the seed. The bed is them tramped or rolled, and finally covered with light brush-the smaller branches of dogwood, oak, gum, or sassafras-not thick enongh to exclude the sunlight, but sufficient to protect the plants from frosts and the chilling and drying effects of the March winds. The brush also serves to keep the bed moist. Some care is required to putt the brush upon the bed properly. The batt ends of the first layer should be laid on the ground outside tho bed, the soft brash resting upon the bed, those of the second layer resting upon the bushy part of the first, and so on until the bed is corered by successive layers. . In this way the thick, heary ends, which would interfere seriously: with the growth of the young plants, are kept above the surface of the bed. A covering of this kind will protect the plants against very hard freezing. In Wisconsin and in northern Illinois marsh or prairie hay is used, just enough to mitigate the severity of the rays of the sun and prevent the drying of the surface by winds until the plants start to grom, which requires a period of two or three weels, when the lay is removed.

The covering of brush is generally allowed to remain upon the bed until the plants are nearly large enough to set out, but it may be necessary to remove it temporarily, in order to pick off any leaves or other trash which the winds are apt to drive upon the beds. To prevent the accumulation of leaves upon a bed prepared in or near a forest wicker fonces, built of brush interwoven between sticks driven into the ground, have been found very efficient.

Treuches dug across the upper end of the bed and along the sides prevent flood-water from sweeping over the surfaco. Heary rains are sometimes very injurious, washing the seeds from a portion of the surfaco and depositing them in depressions.

It is the usual custom to defer manurial applications until the plants are up and well started. Liquid manures are frequently used at this stage. A tight barrel, half filled with cow dung, is placed near the bed, water is added to fill the barrel, the mixture is stirred until it is a semi-liquid mass, and this is sprinkled on the bed with an old broom. Some prefer a solution of guano, a gallon of this fertilizer being mixed with a barrel of water and sprinkled upon the plants. These applications may be repeated one or more times with decidedly good results. Land plaster has proven to be a good application, giving a deep green color to the plants, indicating vigorous and healthy growth.

A hundred methods are practiced or suggested to prevent the ravages of the fleabeetle, but only one plan has proven really effective-to cover the bed closely with canvas or unbleached cotton cloth. A frame is first made around the bed of planks 8 or 10 inches high, care being taken to close every crevice between the planks and the ground. A few wires may be stretched across, the better to hold up the cloth, which is stretched over the frame and closely tacked upon the edges. In place of the wires, a small quantity of light brush thrown upon the bed will help sustain the weight of the cloth. A better plan would be to construct a number of smaller frames, of proper width aud not more than 6 or 8 feet in length, upon which the cloth may be stretched and neatly fastened, a sufficient number of theso frames being provided to cover the intended plaut-bed. Such frames, with their covering, could be removed when no ionger needed and stored for future use. If the cloth is treated with a sivgle cont of white lead and oil, such as is used for the first coat of outside work on wood, it will last several seasons with ordinary care. Still mother plan may be found more economical. The frames may be made and properly braced by cross-pieces let in flush with the upper edges of the planks. The cloth or canvas may be some three inches longer and wider than the frames, and hemmed upon the edges, and eyclet holes may be worlsed along the edges, two feet or less apart, in which cords may be fastened by which to stretch the cloth and tie it down closely over the frames to nails, hooks, or wooden pegs driven into the outer faces of the frame planks, three or four inches below the upper edges. Other devices will suggest themselves to the intelligent farmer, by which he can make the cloth covering effective, easily handled, and economical.

- When the plants are neanly large enough to be set out this protecting cover should be taken off in the morning for two or three days and replaced in the afternoon, that the plants may be gradually hardened by exposure to the direct rays of the sun and better fitted for transplanting.

It often happens that a dry season occurs after the first drawing of plants, and those that remain on the bed cease to grow, turn yellow, and perhaps die. One or two planks and a few blocks of wood should be provided: A block on each side of the bed will support a plank, upon which the person drawing the plants should stand. Nothing injures a plant-bed so much as compacting it when wet, and as plants are almost always drawn when the soil is wet no pains should be spared to prevent treading upon or otherwise compressing the bed. If from any canse the plants begin to turn yellow and wither away shade must be provided by building over the bed a low arbor of green boughs and watering the surface copiously. This will almost always give new vitality to the enfeebled plants.

A practice of many good planters is to resow the beds with about half the quantity of seed originally used as soon as the first plants appear, so that if the first plants are destroyed in any manner the seed last sown will be undergoing the process of germination and a second crop of plants will be assured.

In Tennessee and in North Carolina plant-beds may be prepared and sown at any time from the 1st of November until the Ist of April. Prepared while wet or frozen, a plant-bed rarely does well. Beds are usually burned in February or March; but if the burning is done in the fall, when the soil is dry, less fuel is needed, and the prepared bed may be left to the meliorating influences of the winter freezing, to be sown in the early spring. Many good farmers sow the fall-burned beds as soon as prepared, but there is some risk in so doing. Heavy rains and melting snows are apt to wash or drift the seeds, and so disturb their uniform distribution. One of the best tobacco-growers in the South says that a rod of land well burned in the fall will furnish as many good plants as twice the area burned in February or March.

In some parts of Virginia and Maryland, and in districts where wood and brush are scarce, farmers have succeeded in growing good plauts upon plats of clean soil without burning by the use of guano, raked into the surface, or as a top-dressing, applied at the time of sowing the seed, about 40 pounds per hundred square yards. Others select a standing bed, one that his produced plants well, in a warm location, neither too wet nor too dry; coulter over the bed after the planting season is past and before any grass or weeds have gone to seed upon the plat; cover with straw, leaves, or brush with the leaves on, or with all of them, so thick as to completely hide the surface and prevent vegetable growth. A bed is thus made ready for burning at some dry time from November to

January, or later, which is done by simply applying a torch. By this method a standing plant-bed can be annually prepared which, if hearily manured, will become better each succeeding year.

In Pennsylvania, New York, the New England states, and in Ohio, burning is rarely practiced, and then only so far as may be thought necessary to destroy weed and grass seeds in the upper surface soil. The same seed-bed is used for successive years, kept clear of grass and weeds throughout the year and heavily euxiched by an addition of fresh loam from the woodlands, composts of stable manures thoroughly rotted, and so handled that no foreign seeds capable of germination are left therein, and frequently top-dressings of good commercial fortilizers are used. The most successful growers in Ohio and in New York use manures from the hog-pen, as not only the richest, but as most likely to be free from noxious seeds. In the New England states seed-beds are enriched with guano, castor pomace, well-rotted stable manure, the refuse of the fish-oil factories, or some one of the mumerous manufactured fertilizers. In most of the northern states it is a very common practice to sprout the tobacco seed before sowing. The seeds are mixed with dark, ricl. loam, or, what is better, as in Wisconsin, with finely-pulverized rotten wood from the hollow of an old stump or \log, and placed in a pan or dish in a warm place and lsept moderately damp by frequent sprinkling with tepid water. The seeds germinate under such conditions in about two weeks, and aro sown as soon as danger of frost is passed. Another plan is to spread the seeds very thinly upon a piece of dampened cotton cloth and cover them with another cloth, but of wool; the two are made into a loose roll, the woolen cloth outside. This roll is kept in a warm place, dipped in tepid water every day, and the white germs appar in from four to six days. In northern Illinois similar cloths are kept moist and warm in a pan of earth, of which there is a layer above as well as below the cloths. Great care is necessary in all these forcing processes. Sometimes the soil of the plant-bed is too wet, or otherwise not in proper condition when the seeds are ready, and when a delay of a day or two may render the sprouted seeds useless. The prudent man provides against such danger by preparing several lots of seed at intervals of several days.

The most common error in sowing tobacco seed, both north and south, is in asing too much seed. Tobacco seeds are exceedingly small, an ounce containing about 340,000 seeds. One large, well-developed tobacco plant will produce seed enough to grow plants to set 10 acres certainly, and, should all of them germinate and grow, onough to set out 100 acres. Orowded plants must struggle for existence, are never strong and vigorous, and bear transplantiug badly; those that have room enough to grow thriftily will have a thick tuft of roots, a low, stocky top, and a vigorous constitution, growing off quickly when transplanted. It is far better economy to increase the size of the bed than to attempt to produce a large number of plants by thick seeding.

A bed of 100 square yards will usually furnish plants enough to set 6 or 7 acres; sometimes a bed of this sizo will produce enough to set 10 acres. No tobaccogrower ever regrets having a surplus of plants, for in that case he can select the best and set out his whole crop early. On new land very small plantis may be set, and at any time immediately after the late frosts without risk. For old lands plants should be a little more advanced than such as can be safely planted upon new lavids, but as the season advances larger plants are required for both old and new lands.

INSEOT ENEMLES OF TEA TOBAOCO PLANT.

From the first appearance of the minute seed-leaves in the plant-bed until the tobacoo is out and luang in the barn the patience and watchfuluess of the farmer are taxed to guard against the depredations of insects.

Among the carliest to appear, often attacking the plants and destroying them so early as to make the planter: doubt whether the seed had even germinated, are the "garden fleas", sometimes called "snow fleas" and "springtails" (Smynthurus hortensis). When viewed from the upper side (dorsal view), the most conspicuous divisions are a large head and an abdomen perfectly smooth and plump, without any segmental cross-lines. The tholax seoms confluent with the abdomen. Beneath are some transverse wrinkles, indicating segmental divisions. The antenno are three-fourths as long as the body, elbowed about the middle, and are composed of nine joints, six very short and three very long. Projecting from the posterior of the abdomen is a cone-shaped process, composed of three distinetly marked segmental lines, that appear to be a caudal termination of the body. On the lower side of the abdomen, and near its end, is a forked member (a spring-tail), which lies folded up against the under side and reaches as far forward as the head, in which lies its leaping power. Its feet, six in number, are united apparently to the front of the abdomen, which, from a ventral viow, exhibits a rudimental sternum, compensating for the absence of the thorax usual in insects. This insect has neither wings nor wing covers, and from a top view might be mistaken for a small, black spider by a novice if he did not know that a spider has eight feet, and that the head and thorax are confluent, instead of the thorax and abdomen. These insects are capable of bearing a low temperature, and are frequently found upon the surface of the snow, from whence comes the name of "snow flea". Tobacco-growers complain of these pests under the name of "black fly", "black spider," etc. Their larval and pupal histories seem to be unknown. They are found in all the states of the Atlantic coast, but have not been observed in the interior. They appear as far north as Lancaster county, Pennsylvania, during the months of May and June, but by the first of July they have disappeared, and nothing more is seen of them until the following spring. As a remedy flour of sulphur has been highly recommended. These insects are very delicate in their structure, and cannot be taken between the fingers without crushing them. As it is evident that the finst stages of their development must be passed
noderground and not far below the surface, it is suggested that where tobacco-beds are not burned the soil be prepared early, thoroughly pulverized, and copiously drenched with scalding water three or four times in as many days before the seed is sown.

From all parts of the United States come reports that the flea-beetle is the most jersistent and most dreaded enemy of the young tobacco plants. Several species of these insects are well known to every farmer and gardener from the Gulf of Mexico to Canada. The cabbage flea (Haltica striolata) is found in North Carolina and Tennessee in the latter part of March or early in April, sometimes in immense numbers, in the newly-planted cotton-fields, feeding upon the seed-leaves of the young plants. Dr. Rathoon, of Pennsylvania, describes two species of the genus Epitrix, family Halticida, as follows: The Epitrix oucumeris is black all over, except the antenno and the feet. The thorax is thickly punctured, and the wing covers conspicuously striated and punctured between the strix. The Epitrix pubescons is slightly more oblong, and not quite so convexed as the former, but otherwise is about the same size. The whole of the body beneath is of a dull-black color, including also the posterior thighs. The feet, the antennim (which are slightly serrated along the anterior margin), and the whole of the dorsal or upper part of the body, are of a honey-yellow color, except about a third of the middle portion of the wing covers, which is a dusky black. The thorax is of a much brighter color than the other upper portions of the body, and the eyes are very black, their composite character being more distinct than in the first-named species; and except the thorax, the upper and lower part of the whole body is pubescent. This pubescence is conspicuous in rows between the strim of the wing covers and along the margins of the abdominal segments. This species is the most troublesome to the young cotton and cabbage plants of the middle southern states. They also attack the seed-leaves of beans and other leguminous plants, but appear to have an especial fondness for tobacco. These insects are about one-sixteenth to one-tenth of an inch in length.

The above-named and other species of the Halticans feed on a variety of plants. The sweet potato, cabbage, beet, turnip, radish, horseradish, common nettle, and the Jamostown weed are all infested by one or the other and ofren by the same species of this omnivorons family. When disturbed, the flea-beetles leap off the plants nud hide themselves quickly in the dry soil or under smallclods. Various solutions, poisonous or simply distasteful to these insects, have been used with successful results. Ashes, slaked lime, and soot, dusted upon melon, cucumber, potato, and turnip plants, and applied in the moruing, when the dew is on the plants and while the beetles are sluggish, are effectual in most instances. Of various plans to keep them from tobacco-beds probably the only certain protection is to cover the seed-bed with cloth, as suggested heretofore.

Transplanted into the field, the tobacco plant is exposed to the attacks of other insects. The greasy cut-worm usurlly cuts off the plant just beneath the surface of the soil without cutting the top at all. When these worms are distrubed, they immediately coil themselves into a ring. They do not like the sunlight, and during the day bury themselves in the lower soil in the vicinity of the plant. When grown, they are from $1 \frac{1}{4}$ to $1 \frac{1}{2}$ inches long. They bury themselves beneath the soil to pupate. The pupa is three-fourths of an inch in length, of a shining or glossy light-brown color, and the anterior margin of the segments is dark brown. The anal segment is armed with two very small spines or points, by the assistance of which it pushes itself toward the surface about the time the moth is evolved. This moth is commonly called the Lance Rustic, from the darl-brown, lance-shaped spots on the anterior wings, which are a light brown in color. The hind wings are lustrous and whitish in color, with a grayish margin. The antenne of the females are filamental or thread-like; but in the male, along the inner margin near the base, they are more or less pectinated. The body of the largest specimens is three-fourths of an inch in length, and the wings expand 15 inches from tip to tip. Cut-worms are largely preyed upon by hymenopterous and other parasites, and there is no better or safer remedy than hand-picking while they are yet in the larval state, discriminating in favor of the parasites when seen and known. Toads, lizards, suakes, and moles are all very useful in keeping these worms in check, and should be protected, excepting, of course, poisonous snakes. The cut-worms, in various stages of development, may be found in the earth during the entire winter, too torpid to feed until the return of warm weather. This accounts for their appearance and their advanced physical condition so early in the season. When cut-worms exist in large numbers, as in grass or clover sod or in fields not cleanly cultivated, fall or winter plowings, to expose as much as possible the upper soil to the severe freezings of midwinter, are absolutely necessary to secure a good stand of tobacco; but no matter how hard the frosts, nor how often the ground is plowed, some of the worms will survive, making daily inspection of the newly-planted field indispensable for an even stand of plants.

Wire-worms do not attack the leaf, but bore into the stems of the plants at the surface of the ground and work their tay upward. After the tobacco gets a fair start in growth nothing is seen of these worms for the remainder of the season. They are the larvæ of "click-beetles", or "hammer-bugs" (Elatorida). These worms are sometimes very numerous. In April and early in May, sometimes as late as the first of Jnue, some of these species are very destructive in the corn-fields, especially upon lands which have been lying out for some years; but they are rarely troublesome in well-cultivated fields.

In Ohio, Pennsylvania, and perhaps farther northward, the Heliothis armigera (the sonthern boll-worm, or corn-worm) is sometimes found feeding upon the seed-leaves of young tobaceo plants, but south of 35° these worms are rarely known to attack tobacco plants, since they find more appropriate food in abundance.

Some of the schedules retmmed state that in the earlier stages of growth in the field tobacco plants have been attacked by the Itpilachna borealis (northern lady bird). This insect is shaped like the common "box turtle", is of a lemon-yellow color, spotted all over with black, and when canght in the hand emits a few drops of a clear yellow fluid of mpleasaut odor. It is nearly as large as the Colorado potato beetle, but rather more hemispherical, and the larva, pupa, and imago are often found together on the same plaut. They are usually found upon pumpkin, melon, and cucumber vines. The larva is a short, convexed slug, of a uniform bright yellow color, covered all over with short, bristly hairs, and has a pair of very black eyes. It undergoes all its transformations on the plants it infests, and the pupa is suspended by the adhesion of the candal extromity. This species and several others of the same family hibernate beneath the rough outer bark of the wild cherry, and sometimes upon the apple trees in neglected orchards. These insects, as well as some others hereafter mentioned, are rarel,y found upon tobaceo plants except near trees or shrubbery or close to fences.

Tree urickets (ODcanthus niveus) are often found upon tobacco plants in Tennessee, North Carolina, and other southern tobaceo regions in July and August, and in Pennsylvania and farther north in August. Thongh usually found on trees, these crickets show a decided partiality for tobacco, perforating the tender top leaves about the time they are expanding. It does not kill the leaf nor arrest its growth, but the holes increase in size. Although these holes are circular when first made, they become oblong as the leaves lengthen, and always in the longitudinal direction of the leaf. These crickets, when young, either leap away or hide among the leares when approached, but after their wings are fully developod they can both leap and fly to a considerable distance. The male tree cricket is nearly white, sometimes tinged with green; the wings lie flat on the back, one lapped over on the other; the legs are all long and slender, the posterior pair moch the longest, and formed for leaping; the antomme are very long and threadlike, and are generally thrown backward when the auimal is at rest. The female is more robustamb shorter in the body; the wings are short and deflexed, and her color is varions shades of green and brown. Her legs and anteme are also shorter tham those of the male, and at the end of the abdomen she is provided with a sword-like ovipositor. She perforates the raspberry and blackberry canes, as well as the tender branches of other shrubbery, with this instrument, and deposits her eggs therein, where they remain all winter and hatch in the spring. 'lobaco cultivators hare noticed that these insects are most abundant on tobacco growing under or near trees. Cleau culture, and the clearing up of fence corners and negleeted spots about the tobaceo fields, will do much to prevent injury by crickets.

Various species of grasshoppers, especially the meadow grasshopper (Orohilemum vulgare), somotimes feed upon the tobacco plant, eating the leares of the newly-set plants while in a wilted condition, but the injury from this source is slight, and rarely occurs with any but late plantings.

Several species of hemipterous insects puncture tobacco plants. These insects are true bugs, and are not provided with mandibular organs. They do not eat the plant nor cut holes in it, but are provided with a sharp proboscis, with which ther pience the plant and suck ont its juices. One of these, the Phytocoris linearis, is a small gray inseet about a quarter of an inch long, having generally a conspicuous yellowish V-shaped mark on the back, oncupying that, part called the scutellum. 'This bug is found upon the potato, and has been obsorved in Tennessee mpon parsnip, tomato, and late cabbage plants. The Eusohistus punoticops is a moch larger insect than that last described, and is eapable of greater injury. It belongs to the family Scutellarida, distinguished by a triangular lobe that extends from the base of the thorax downward on the wing covers. This insect is half an inch long and three-eighths of an inch across at the broadest part. Above, it is of a yellowish color, and closely panctured darkly, giving it a grayish hae; below, it is a light greenish yellow. It has a longer and more slender proboscis than the species that prey upon other insects; otherwise it might easily be confounded with them, and no doubt frequently is. It also lacks the thoracie spines; but these are very variable in their development, and not always asafe distinguishing characteristic. These bugs are found on mulleins, thistles, and other weeds, and have also been found upon tobacco plants in several localities, feeding upon the sap of the leaves, but it is doubtful whether any great injury can be charged to their account. The ordinary observer is apt to mistake the purpose for which many insects visit various plants. The spined tree-bug (Podisus spinosus), the large tree-bug (Podisus oynious), the Sitiretrus diana (a plant bug of a purple-black color, with red or orange marks on the thorax and scutellum), and the Stivetrus fimbriatus, the ground colors of which are orange or yellow, with black markings, are sometimes found upon or in the immediate neighborhood of tobacco plants. These bugs should not be destroyed, unless upon careful examination they are found actually feeding upon the juices of the leares, as it is more than probable that their presence is beneficial, rather than injurious.

From the early part of June until the sharp frosts destroy their food in the fall the larve of the sphinx moths infest the tobacco. In Virginia, Maryland, Kentucky, Tennessee, and Missouri both the Sphinx carolina and the Sphinx quinquemaoulata are found, and they are both reported as found in the tobacco-fields as far north as latitude $41^{\circ} 30^{\prime}$. South of latitude 35° only the S. carolina has been observed. The larvæ of these two Sphingidce are so well known to all tobacco-growers as to need no description here. They have always been regarded as the mostiuveterate enemies of the tobacco plant, and, despite plans adopted for their destruction, the horn-worms seem to be as numerous as ever. In some seasons there are comparatively few in certain localities, but it has been noticed that the fields of such districts are often visited late in July or August of the next jear by a "heavy shower" of horn-worms.

Comparative immunity for one season too often causes the farmer to neglect the destruction of the late brood of worms left upon the suckers which spring up after the crop is harvested, large numbers pupating and hibernating, protected by the forgotten and neglected trash of the tobacco-field. Catching the moths with ingeniously-contrived traps, poisoning them with sweetened cobalt dropped into the bloom of the Jamestown weed, or killing them with paddles as they hover about the tobacco plants after sunset, are all practiced. Recently, as in Temessee, porcelain imitations of the blossom of the Jamestown weed have been introduced. These are fastened upon sticks, set up at short distances apart throughout the tobacco-field, and are supplied with a few drops of poisoned sirup. They are cheap, will last with ordiuary care a lifetime, and are highly recommended by planters who have used them. A lenowledge of tho transformations of these insects will enable the observant farmer to do much to reduce their numbers, and if it were possible to secure prompt measures throughout a considerable section of country, or even by the growers of a large neighborhood, much disagreeable labor might be saved.

The moth deposits an egg of a sea-green color, not larger than a mustard-seed, upon the surface of the leaf. This egg gradually assumes a cream color, and from it, in clue time, a tiny worm issues, not larger than a horse-hair, and about one-eighth of an inch in length. The process of hatcling embraces from twenty-four to thirty-six hours, depending upon the condition of the weather. The worm begins to eat immediately, making first a small hole in the leaf, throngh which it passes in hot weather to the under side, and occasionally the eggs are there deposited by the moth. This worm, though voracious, does little damage for four or five days. Its power of destruction inoreases exceedingly with each day, and this makes it highly important to go over the field often in search of them.

When the horn-worm has attained full size it stops eating, comes down from the plant, and usually burrows into the ground close to its last feeding-place, but not unfrequently crawls away some distance to find soil sufficiently soft to enable it to get some inches below the surface. Here it becomes quiescent, casts off its larva skia, and assumes its pupal form. It is now oval in shape, four times as long as it is thick, about 1 inches in length, and the hard, glossy enrelope is of a bright chestunt color. The forward end is prolonged into a long, tube like appendage, bent backward and firmly attached to the chest, forming a loop like a pitcher-handle, this tube ensheathing the tongue, which is so remarkably developed in the perfect moth. Only under peculiar circumstances are these pupe found at a greater depth than may be reached by deep plowing. A further means of reducing the number of these insects is therefore by fall or winter plowing the tobacco-fields. It must be said, however, that even if every egg, worm, moth, and chrysalid in a given neighborhood were destroyed, high winds, or even the lighter breezes of the summer evenings, bring other moths many miles. The tobacco-grower should instruct those in his employ not to destroy any horn-worm found with the cocoons of the parasite Microgaster congregata attached to its body. These cocoons are white, of a regular oval form, a little more than an eighth of an inch long and about onesixteenth of an inch broad, and resemble small grains of rice. From ten to a hundred of these cocoons are foand upon a single horn-worm. Tho worm so infested may be removed from the tobacco plant, but should be handled carefully and placed where the cocoons mas not be injured, so that the parasites may latch undisturbed. The flies which issue from the cocoons are black, with clear, transparent wings and legs of a bright tawny color, the hue of beeswax, with the hind feet and the tips of the hind shanks duskr.

The testimony of all tobacco-growers points to the one conclusion about insect enemies. No methods of prevention or destruction can justify a single day's neglect to search for and destroy cut-worms about newly-set plants and the eggs and larve of the sphinx moth upon the expanded leaves thronghout the season.

dISEASES OF THE TOBACOO PLANTS.

The tobacco plant is subject to certain diseases, few in number, however, and rarely resulting in very serious damage. Unfarorable seasons, too wet or too dry, often reduce the yield and impair the valne of the product; but diseases, properly so called, seldom affect more than a ferr plants, or perhaps a small portion of a field. Schedules returned from widely-separated districts mention the same diseases, all of which result from deficiencies in the soil or its preparation, or from peculiarities of the sensons during growth.

A disease known in New England as "brown rust", and in the South as "firing" and "field-fire", prevails to some extent every year. It appears in very wet or very dry weather, and reports concur in the opinion that it is caused by violent changes from one extreme to the other. A plethoric plant with the supply of moisture suddenly cato off, and a leau plant forced by excessive moisture to rank growth-a leaf perishing in spots for lack of sustenance, and another from the opposite cause-present variable conditions, developing "rust" or "fire". This disease is not so prevalent in some districts as formerly, which is attributed by some planters to the substitution of now for old varieties; but it is more probably due to planting upon a different character of soil, or to more thorough drainage and improved calture. Sometimes, though rarely, the entive plant is involved, drooping and witheriug through excessive hamidity. This is the "black fre", a strictly wet. weather disease. In dry weather the plant sometimes parches up, as if scorched. In uniform, ordinary seasons it does not appem. Injudicious use of henting manures is assigned as sometimes the cause of firing, and undoubtedly does occasionally prodace "red" or dry-weather firing. Thorough drainage is regarded as the best preventive of this and its kindred diseases.
"Frenching", derived from the French friser (to curl), occurs almost exclusively upon cold, stiff uplands, having a close and stiff clay subsoil. During a wet season it is very prevalent upon clayey lands, and is sometimes found upon sandy soils in small basins during excessively rainy weather. This disease renders the plant worthless when it has progressed to auy considerable extent. The effects are first seen in the buds of the plant, which become of a yellow color. The leaves afterward become thick and fleshy, have a semi-transparent or honey-colored appearance, and often curl around the edges downward, sometimes growing in long, narrow strips, with ragged outlines. When cured, the leaves are dull and lifeless in color, and very brittle. No remedy for the disease has been foum. It is sometimes arrested by close plowing, or by giving the plant a vigorous pull, so as to break the tap root, butt the only preveutive measure is to avoid planting upon a soil not properly underdrained, either naturally or artificially.
"Walloon", or "water-loon", is of very common occurrence, and is closely akin to "frenching". The leaves, instend of curving over in graceful outlines, stick up like a fox's ears, whence the disease is known in some sections of the country as "fox-ears". When tobacco is thus attacked it becomes rough and thick, and is unfitted for any but the most inferior purposes. Excessive tenacity of the soil or defective drainage are causes of the disease.
"Follow stalk" and "sore shin" rarely occur, except when the plants have been overflowed, and then mostly upon old lands. Some planters attribute "lollow stalk" to an insect feeding upon the pith of the lower stalk, or to the after effects of an attack by the wire-worm upon the young plant; others think it the effect of a bruise or a wound upon the stem of the young plant. The two names above given are descriptive of different appearances of the same disease. It is most probably produced by excessive absorption of water by the pith of the stall while partially subnerged and subsequent exposure to a high degree of temperature. It is not reported as occurring upon such lands as are never flooded by rain water, nor has it been observed upon soils well underdrained or overlying a porons subsoil. There is no remedy for it, and unless the plauts are cut as soon as it appears they become worthless. The affected plant preseuts very much the same appoarance as if nearly severed from the stalk, withering slowly without ripening.
"Frogeye", or "white speck", sometimes occurs in tobacco thoroughly ripe. This disease, if it is such, is of rare occurrence, and is little understood. In Florida white spocks are a sure indication of fine texture in the leaf, and this "frog-eye" appearance was at one time much esteemed. This particular marking seems to result from conditions of soil or climate, or from both, and some varieties are more frequently affected than others.
"White veins" occur in the cured product. By some they are believed to be caused by long-continued dry weather before and after cutting; by others they are ascribed to any check in the growth of the plant, whether for lack of manures, from deficient cultivation, drought, bad seed, or too much water. Some think they are caused by the absence of some soil constituent. All that can be said is that they do occur, very much to the injury of the leaf for wrapping purposes. As a general rule, the product from a field well prepared, well fertilized, and well cultivated, planted in good season, properly topped, and kept free of suckers, will show, when cured, very few white veins.
"Leprosy" is a name given to a fungoid mold which is occasionally found upon cured tobacco hanging in the barn during warm, moist winters. This mold affected a large portion of the crop of 1880 in the Ohio River valley, espocially in southern Illinois, and in the lower Ohio River districts of Kentucky. This fungous plant increases with amazing rapidity wherever the spores tind congenial lodgment, and even sound, dry tobaceo is sometimes infected and seriously damaged. This disease, althongh not a new one, is imperfectly understood. Appearing to a serious extent only in weather congenial to its development, and propagated from spores which have escaped detection in badly-kept barns or tobaceo-sheds, too many planters look upon it as of obscure or doubtful origin, or as an inevitable concomitant of unfavorable atmospheric conditions. The remedy is prevention. Thorough cleausing of the tobacco-barns, stripping, assorting, and packing rooms, and the careful destruction, by burning, of all the trash and dirt which accumulate about the premises, will secure well-handled tobacco against "leprosy", and perhaps other diseases of fungous origin.

TOBACCO STRIPS.

The making of strips, although a distinct branch of business, rarely, if ever, carried on by tobacco growers, is regarcted as a part of the necessary preparation of the leaf when designed for shipment to English markets. This stemming process is employed almost altogether upon the heavier types of tobacco, so that the leaf, deprived of the midrib or stem, may be shipped in a dry condition. The tax in England on tobacco is 3 s. $6 d$. , about 84 cents, per pound. On a hogshead of tobacco weighing 1,000 pounds net a tax of $\$ 840$ must be paid to the government Assuming the tobacco to cost 15 cents per pound, the value of the hogshead, tax paid, would be $\$ 990$, or 99 cents per pound. If it should have the capacity to absorb 15 per cent. of water, the profit from this would be $\$ 14850$. Tobacco selected for strips should therefore be porous and a "deep drinker". The greater its capacity for absorbing water, other things being equal, the larger the profit. Recently the government of Great Britain has taken cognizance of this source of profit, and now requires a duty of $3 s .10 d$., about 92 cents, to be paid on all tobaceo containing less than 10 pounds of water to the 100 pounds.

Details of the manner of purchasing tobacco for stemming purposes, the types used, and the method of assorting, preparing, and putting up strips for export, will be found in the special reports upon the states of Indiana, Kentucky, and Firginia.

Of the crop of 1879 there were put up during the fall and spring of 1879-90, as nearly as can be ascertained, 17,315 hogsheads of strips; or, assuming the average net weight at 1,200 pounds per hogshead, 20,778,000 pounds, requiring about $31,000,000$ pounds of leaf.

The estimated make of strips from the crops of 1876 to 1879 , inclusive, were as follows:

Year.	Section.	Hogelends.
1876.	Virghia......	8,500
	The Weat.	20,000
1877....	Virginir.	7,500
	The West.	38,000
1878....	Virginin.	0,000
	The Wert.	10,000
1879....	Virginia.	4,300
	The West.	18,01B

Of the strips made in 1879-80 there were put up at-

	Hogsheads.	Pounds.
Richmond, Lynohburg, Petersburg, and Farmvillo, Virglnia.	4,800	6,100,000
Henderson and Owensboro', Kentueky	5,675	
Loutsville, Russellville, and Paduenh, Reutuoly	2,000	12,240,000
Minor points...	2,625	
Evansville, Boonoville, Corydon, Indima, and other points ...	1,425	1,710,000
Clarissvillo, Paris, Springfleld, and Nashville, Tennebsce	1,290	1,548,000
Criro, milnois..	1.00	120,000

3
3
3
\vdots
3
3
A small quantity of White Burley strips was put up on the Ohio river below Oincinnati as an experiment; also about 500 cases of seed-leaf at Miamisburg, Ohio.

The preparation of strips for export is a business of considerable importance in a few cities and towns, as in Henderson, Owensboro', and Louisville, Kentucky; Richmond and Lynchburg, Virginia; Olarksville and Paris, Tennessee, and Booneville, Tudiana. In these places a large capital is invested in warohouses and the necessary appliances for handling large quantities of tobacco. This branch of industry can, however, be successfully and profitably managed on a small scale, and there seems to be an increasing disposition to carry it on in close proximity to the districts which produce the types best fitted for the purpose. The saving in cost of handling, transportation, etc., of over 30 per cent. of weight has assumed more importance since there is no longer a profitable market for the stems and other waste of the factories.

CONOLUSION.

The tobacco plant oxhibits a facility for adapting itself to diverse conditions, rivaling that of Indian corn, and excelling that of the potato. All three are plants thriving best upon soils rich in the salts of potassium. In all sections of the Union any well-drained soil capable of producing Indian corn will produce tobacco, the latter exhibiting, however, much more strongly marked diversity of characteristic qualities, as affected by variations of soils and of climatic conditions.

The best types of fine tobacco in the southern states are grown upon soils poorly supplied with vegetable matter and are poor in albumen, although sufficiently rich'in nicotine, while the best types of the northern tobacco districts a.e grown upon lands purposely enriched with nitrogenous mauures, to promote rapid growth and enrly maturity, and are also poor in allbumen, burning freely without disagreeable odor, and are at the same time firirly supplied with nicotine. That these similar results should follow unlike conditions of fertility of soil can be attributed alone to difference of climate.

The special reports herowith submitted present another apparent anomaly. In the southern tobacco-growing sections the use of commercial fertilizers, while generally increasing the yield of pounds, has not resulted in an improvement of quality; and, per contra, in the northeru states these fertilizers have almost always bettered the quality of the product.

Both north and south, on the Atlantic border and in the far interior, the surest reliance for an increased yield is the free use of composted or well-rotted farm-yard and stable manures, and these are almost invariably accompanied by a parallel improrement in quality.

It is asserted, with some show of reason, that the color of the cured leaf is correlative to the color of the soil upon which the plant is grown; and it is certain that upon dark-colored soils, and especially upon those containing a large proportion of clay, the stronger; heavier, and darker types are produced. Although the seed-leaf varieties
grow finer and make a really superior quality of tobacco upon sandy soils, fashion has dictated that darker colors aro most desirable for cigar wrappers, and the colors most in demand are grown upon argillaceous and calcareous loams. The fine yellow types of North Oarolina and Virginia are growu upon light-colored arenaceous soils.

Tobacco culture, perhaps more conspicuously than any other kind of farming, exhibits the condition of agricultural progress in the regions in which the staple is produced. The revenue tax has had the effect of discriminating in favor of good tobacco, has really been an incentive to the production of finer types mud better grades, and has induced better cultivation and more careful management. Progressive enterprise in tobacco growing has had most beneficial effects upon other agricultural pursuits. The tobacco-field usually occupies but a few acres upon the farm, and in most cases gets a large share, if not all, of the manures saved at home. It is upon these limited areas, in all parts of the country, that the most carefully-conducted and best authenticated experiments have been made with commercial fertilizers. Wherever tobacco culture has been made profitable, there has been an increase of all farm products suited to the locality.

In the preparation of these reports the object has been to furnish abundant information as to the geological position, the lithological constitution, and the geographical location of all soils which have been found specially adapted to certain classes and types of tobacco.

Ohapter XXI.

REPORT ON THE CHEMISTRY OF AMERICAN TOBAOCOS, BY GIDEON E. M00RE, Pe. D.

Tobacco in commercial form represents the products of vegetable growth more or less changed by formentative or putrefactive processes. The peculiarities of the different varieties are, therefore, of twofold origin, being due, first, to the diverse conditions of soil, climate, and mode of cultivation; and, second, to the effects of the processes of curing to which the harrested leaf has been subjected. While, thorefore, it is permissible to trace out the relations between the nature and the relative amounts of the constitnents of the finished commercial product and the properties upon which the technical application and commercial rank of the latter depent, the question of the influence of the diverse conditions, under which the cultivation of the different varieties has been effected, on the quality of the finished product, can only be decided from the results of the chemical examination when due regard is had to the modifying effects on the composition of the product, exerted by the processes of ouring to which it has been subjected. These last consist either in simply drying the leaf by exposure either to the lieat of the sun or to more or less carefully regulated artificial heat, in which case fermentative change is either avoided or reduced to a minimum ; or they consist in a more or less perfect fermentation preliminary to, or simultrneous with, the operation of drying, and in this case result in essential modifications in the composition of the leaf and degree of adaptability to the different applications for which it is designed. The process of curing, however conducted, is only then regarded as complete and the tobacco fit for market after the leaf has undergone a supplemental process of fermentation, technically known as "sweating". This sweating oceurs during the spring or summor following the curing proper. It is attended with elevation of temperature to $120^{\circ} \mathrm{F}$., and rosults in essential modifications in the flavor and combustibility of the tobacco, and necessarily also in its chemical composition,

OONSTITUENTS OF THE TOBAOCO LIDAT.

The constitueuts hitherto detected in the leaf of the tobacco plant are as follows, viz:
Nroorine $\left(\mathrm{O}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}\right)$.-A volatile oily substance, possessing a strong, acrid, tobacco odor. It is a powerful base, and forms well characterized compounds (salts), with the stronger acids. It is to this substance that the narcotic and toxical properties of tobacco are chiefly to be ascribed, especially when the leaf is chewed or the decoction is administered internally. When the tobacco is smoked, the nicotine is partly decomposed, and its decomposition products, together with those of the other constituents of the leaf, co-operate with the nicotine that sublimes unaltored to produce the physiological effects of the smoke.

Nicotine is present at a very early stage in the development of the tobacco plant. According to Nessler (Der Tabak, seine Bestandtheile und seine Behandlung: Mannheim, 1867, p. 12) it is present in the ribs and parenchyma of the leaves of the young plant when the leaves are only $1 \frac{1}{2}$ to 2 inches long. The following determinations by Nessler show the proportions present in leaves of different degrees of maturity :

The leaves marked No. 4 were the upper leaves from the same stalk that furnished the leaves marked No 3.
The foregoing results would show that the relative proportion of the nicotine increases with the age and development of the leaves. According to the same author, although the green leaves contain more nicotine than the fermented leaves, the nicotine odor is not perceptible in the former; it appears ouly after fermentation.

Nicominnine.-A volatile substance, of the consistence and appearance of camphor, possessing the odor of tobncco, and an acrid, aromatic, and bitter taste. According to the analysis of Barral (Pelouze er Frémy : Traité de Ohimie, T. iv, p. 633), it possesses a composition in accordance with the formula $\mathrm{O}_{23} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3}$. It is chemically on indifferents substance, forming no compounds with acids or alkalies, and is supposed to be the substance to which the characteristic odor and flavor of tobacco are chiefly due.

Restinous and fatty substanoes.-Tobacco contains a considerable proportion of resinous and fatty substances, coucerning the uature of which as yet little is known. That the odor of the smoke is greatly influenced by these substances is more than probable, and this wonld appear to be especially true as regards the question of thoir resinous or fatty nature. The finely flavored tobacoos of Havana and Porto Rico are, according to Nessler: (op. oit., p. 29), richer in such substances than many European tobaccos, the smoke of which is strongly charged with the odor of burning fat, whence he infers that in the first named varieties the resinons substances are present in excess of the fats.

Stardir ($\mathrm{O}_{36} \mathrm{H}_{62} \mathrm{O}_{31}$).-All tobaccos contain starch, usually insmall proportions, although under certain conditions, as in the experiments of Schloesing (Comptes-Rendus, lxix, 253), the amonnt may rise to over 19 per cent. of the weight of the dry leaves.

Sugar (glucose, $\mathrm{O}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$) is also present in the fresh (green) plant, usually in small proportions. When the tobacco is fermented in the operation of curing, the sthgar usually disappears.

Nitrogenous substances generally (albuminoids).-Beside nicotine and nicotianine tobaceo contains a large proportion of nitrogenous organic substances. Vauquelin (Annales de Ohimie, lxxi, 139) found vegetable albumen in green tobacco, and his observations were confirmed by the investigations of Goupil (Comptes-Rendus, July, 1840, No. 1), made under the direction of Fremy, and by the analysis of Posselt and Reimann (Pharm. Centralbl., 1847, 171). Tobacco that has become yellow or brown on drying, no longer contains the albuminous substance above noted. The uitrogenous substances extracted from harvested and dried tobacco are brown, and are to be regarded as the products of the more or less advanced alteration of the albuminous substances originally present in the green leaf. These brown nitrogenous substances approach closely in their properties to the (so-called) ulmic acid (Pelouze ea Frkiny, op. oit., iv, 636).

Peorio $4010\left(\mathrm{O}_{16} \mathrm{H}_{22} \mathrm{O}_{15}\right.$, Frémy) occurs in varying proportions in tobacco, and gives strength and stiffiness to the leaf. It has been generally assumed to exist in the tobacco in the state of calcium pectate.
 tobacco, the first two in large, the last in small proportions. They exert a very important effect on the quality of the leaf.

Acterro $\triangle O I D\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)$ is present in varying, and ustally small, proportions, and is either wholly or at least for the most part a product of fermentation.

Nimpio acrd ($\mathrm{H}_{\mathrm{N}}^{\mathrm{N}} \mathrm{O}_{3}$) is present in certain cases in considerable quantity. According to Nessler (op. cit., pp. 22 and 28) the presence of this substance in tobaceo is to be aseribed, either wholly or in part, to the decomposition of other nitrogenous substances by fermentation with free access of air (nitrification). Reasons will be hereafter given which would appear to justify the opinion that this conclusion of Nessler's is erroneous, and that the nitric acid in tobacco has entered the plant through the processes of nutrition (absorption by the roots) during the period of its growth.

Ammonis ($\mathrm{H}_{3} \mathrm{~N}$) is present in all tobaccos, ustually in small proportions. It is evidently a product of fermentative change. Nessler (op. cit., p. 19) asserts that it does not occur in fresh (green) tobacco, and it is found to be evolved in large quantities during the fermentation of snuff. (Pelouze wt Frény, T. iv, pp. 654 et seq.)

Cellumose (drude fibir). -This material constitates the frame-work or skeletion of the cellular tissue as distinct from the cell-contents. According to the proportion in which it is present, it bears a most important relation to the claracter of the leaf, as regards the texture, and, in the case of smoking tobaccos, the combustibility and general quality. According to Frems (Pilouze et Fremi, T. iv, p. 647) the proportion is usually from 6 to 11 per cent. It is greatest in fine tobaccos of close texture and least in coarse tobaccos of thick tissue. According to Nessler (op. eit., p. 29), the quality of tobacco (for smoking) improves to a certain extent as the proportion of woody fiber increases and that of the soluble organic (extractive) substances diminishes.

ORGANIO SUBSTANCES OF UNDETERMINED OHARAOTER.-In addition to the substances previously enumerated, tobacco contains certain other substances, the nature of which has not been investigated. Among these are substances of a gummy consistence and indefinite chemical character, substances similar in properties to the humus substances, possibly also the decomposition products of tannin, which latter substance, while often present in the green leaf, is present only in faint traces in some of the less perfectly cured samples.

Minerat ingredients (asi).-The leaves of the tobacco plant are exceedingly rich in mineral ingredients, and the amount and nature of these is of essential influence on the quality of the material.

DISTRIBUTION OF THE DIFPERENT CONSTITUENTS IN THE PLANT.

From the investigations heretofore made concerning the distribution of the different constitnents, it would appear that they are very unequally distributed throughout the different organs of the tobacco plant.

The results of Nessler have, as already stated, shown that nicotine is present in larger quantity in the substance of the leaves than in the ribs. Buchner (Buchner's Repertorium, xxxii, 38) found it in abundance in the seeds of the plant. In the leaves from plants grown under different conditions of soil, climate, and mode of cultivation, the percentage of nicotine varies greatly, as will be seen from the following analyses by Schloesing (Ann. Chim. Phys. [3] xix, 230):

PROPORTION OF NICOTINE IN LEAF TOBACCO, COMPUTED ON THE LEAF, DRIED AT $100^{\circ} \mathrm{C}$.

Variety or seuree.

The amount of nicotine varies in different samples even among those from the same locality, and is influenced greatly by the character of the fermentation which the tobacco has undergone, as well as the length of time it has been kept, and the degree of exposure to which it has been subjected.

Nitric acid is very unequally distributed in the plant, being, as will be seen from the following table by Schloesing, (Ann. Olim. Phys. xl, 479), much more abundant in the midrib than in the substance of the leaf.

PROPORTION OF NITRIC ACID IN TOBACCO, COMPUTED ON THE LEAF, DRIED AT $100^{\circ} \mathrm{C}$.

Franci:	Porcentage of nitrio acid in tho lear deprived of the midrib.	Porcentage of nitrila anda in the midrib.
Department Nord	1.49	5.00
Department Pas-de-Calais	1.74	5. 99
Department Ille-et-Vilaine	0.48	2.10
Department Lot	0.60	2.08
Department Lot-et-Garonne	0.90	1.98
Alsatia	0.23	0.46
Algiens:		
Algerie des colons	0, 74	0.10
Algério des Arabes.	0. 14	1. 04
Europe:		
Folland	2. 00	5. 12
Hungary (Szegedin)	0.39	3.11
Hungary (Debreczyn).	0,02	0.43
Maoedonia.	0. 02	0. 25
Exotio:		
Maryland	0.09	0.74
Kontucky	0.97	5.67
Hayana	0.14	0.72
Brazil..	0.08	1.80
Paraguay	1.80	4.70
Java...	0.02	0.15

According to Schloesing, the percentage of nitric acid in the midrib diminishes as the latter contracts on approaching the apex of the leaf. The small lateral ribs contain nearly the same amount as the substance of the leaf. By the fermentation of tobacco, as in the manufacture of snuff, the percentage of nitric acid remains unchanged.

Pectic acid is contained in larger proportions in the ribs than in the substance of the leares.
The mineral ingredients are distributed unequally in the different parts of the plant, as will be seen from the following table (Pexouze er Premp, T. iv, p. 637) :
Leaves and ribs
Stalks 6 to 16
Roots. 5 to 14

analyses of oerrain of the prinuipal varieties of amerioan tobacco.

In Tables I, II, and III are given the results obtained in my analyses of samples of some of the principal varieties of American tobacco.

With the exception of No. 35, which was furnished by the producer, the samples were furnished by Colonel J. B. Killebrew, special agent for the investigation of the details of the cultivation and curing of tobacco. The samples were numbered and labeled as follows:

No. 3. Virginia tobacco. Sun-cured ; for manufacturing plug tobacco.
No. 5. Virginia tobaceo. Fire-cured; for the German and continental trade. Low grade.
No. 7. Temessee tobacco. From Clarksville. Fire-cured; for the German and English markets. Gummy. Grown on rich, heary loam, heavily manured.

No. 19. Kentucky tobacco (White Burley). From the Mason county district. Air-cured (in sheds, without artificial heat) ; for cutting or plug tobacco.

No. 10. North Carolina Yellow tobacco (Bright Wrapper). From Granville county. Grown on white or light gray sand.

No. 28. Louisiana tobacco. "Perique, cured in its juices." (Leaf deprived of midrib.)
No. 37. Louisiana tobacco. "Perique," air-cured. (Leaf deprived of midrib.)
No. 35. Connecticut Seed-Leaf. From New Milford. Grown on rich Ioamy soil, heavily manured. This sample was freshly cured, and had not undergone the "sweating" process.

No. 30. Connecticut Seed-Leaf.' From Hartford, Oonnecticat. Grown on sandy soil.
No. 34. Pennsylvania Seed-Leaf. From Manor township, Lancaster county. Grown on a clearing, being the second crop after removing the timber. Eighty bushols of lime were used to the acre, but no manure.

No. 16. Ohio Seed-Leaf.
No. 22. New York State Seed-Leaf.
No. 25. Wisconsin and Illinois Seed-Leaf.
The details of the modes of curing and cultivation of these samples are fully set forth in the report of Colonel Killebrew. It is, however, desirable in this place to briefly recapitulate the leading features of the treatment to which the plants have been sulbjected, in so far as may be necessary for the correct interpretation of the results of the analyses.

Apart from the difference in character of the soil, the differences in the mode of cultivation between the different varieties relate chiefly to the length of time the plaut is allowed to remain in the field after the "top" has been removed. As soon as the leaf ceases to expand, and the "granulation" due to the distension of the individual cells of the leaf throngh accumnlation of intercellular substance begins, which, in good soil, and with favorable weather, will take place in from two to three weeks after "topping", the seed-leaf varieties are cut. The heavier tobaccos are, on the other hand, allowed to remain from four to six weeks before cutting, or, in the case of heavy shipping leaf (samples Nos. 5 and 7) until fully ripe and ready to decay.

Ooncerning the modes of curing: Sample No. 3 was cured by simple exposure to the sun on scaftolds. Samples Nos. 5 and 7 were cured by open wood fires in close barns, the heat being kept at or below $90^{\circ} \mathrm{F}$. ($32.2^{\circ} \mathrm{C}$.) for two days, after which it was allowed to rise to $125^{\circ} \mathrm{F}$. ($51.6^{\circ} \mathrm{O}$.) and then to $150{ }^{\circ} \mathrm{F}$. ($65.5^{\circ} \mathrm{O}$.), the last heat being continued for twenty-four hours, and the operation being complete in about four days and nights. No. 10 was cured by a very carefully regulaterl heat in close barns; the temperature being maintained for thirty-six hours at 900 F . (32.20 O .), and then carefully and systematically raised to $170^{\circ} \mathrm{F}$. ($76.6^{\circ} \mathrm{O}$.), at which it remained for ten hours, the operation being complete in sixty to sixty-five hours, open coal fres or flues being used. Samples Nos. 19 and 37 and the seed-leaf samples (Nos. 35, 30, 34, 16, 22, and 25) were cured without artificial heat in sheds, ventilated by doors which are left open during the day, except in very damp weather, and closed at might.

From the foregoing it is erident that the samples Nos. 3, 5, 7, and 10 were cured with very little or no fermentation, whereas the other samples must have suffered considenable fermentative change. The process of curing, to which the sample No. 28 (Perique cured in its juices) was subjected, involves a very thorough and prolonged fermentation, with periodical applications of pressure, which last would tend to express the juices of the leaf from the cells and insiure an exceedingly thorough and uniform fermentative process.

METHODS OF ANALYSIS EMPLOYED.

In preparing the samples for analysis, the leaves were exposed to the air at ordinary temperatures until thoroughly dry, the whole leaf, inclusive of the midrib, except Nos. 28 and 37, ground to fine powder and preserved in tightly stoppered glass bottles. The different determinations were then made on the air.dried leaf by the methods given below, and the results reduced to percentages in the substance, dry at $100^{\circ} \mathrm{O}$.

1. Mois'ture.-Five grammes were dried for two hours in the air-bath at $100^{\circ} \mathrm{C}$.

TOBACCO PRODUCTION IN THE UNITED STATES.

2. Nicormas was letermined in ten grammes by the method of Schloesing, as described by Grandeaa (Handluch fïr Agrioultur-ohemische Analyse: Berlin, 1879, p. 194), namely, by exhanstion with ether after making the sample strongly alkaline with ammonia, evaporation of the ether and titration of the residue with deci-normal sulphuric acid.
3. Peotio aomd was also determined by the method of Schloesing, as described by Grandean.
4. Starcer was determined in the residue from which the pectine substances had been removed by inversion to glucose by the method of Sachs (Corr. Blatt d. Tereins analytischer Ohemiler, ii, 15, 21, and 25, and Jour. Am. Ohem. Soc., i, 546) and gravimetrical determination of the glucose with Fehling's solution, as described in the case of sugar.
5. Sugar.-Ten grammes of tobace were exhansted with 85 per cent. alcohol, the extract evaporated to remove the alcohol, the residue dissolved in water and made up to 500 cubic centimeters. One hundred cubic centimeters of the solution were then measured off, treated with excess of basic lead acetate, fltered, and the filtrate and washings of the precipitate brought to the volume of 200 cubic centimeters. The solution was then made alkaline with sodium carbonate, treated with a moderate excess of Felling's solution and heated for bwentyfive miuutes to a temperature of $75^{\circ} \mathrm{O}$. to $80^{\circ} \mathrm{O}$. The cuprous oxide was then collected on a weighed filter aud the equivalent of the precipitate in glucose calculated from the results of check determinations made muder the stme conditions with inverted cane sugar. A second portion of the original solution was then subjected to the process of inversion, after precipitation with lead acetate and treated as above with identical results-showing that no cune sugar was present.
6. Nimbid ado was determined by exhausting the tobacco with 85 per cent. alcohol, evaporation of the extract, re-solution in water, and then proceeding by the method of Schnltze (Zeitsohrift f. anal. Ohemie, 1870, 401); the error (a slight loss) incident to the method as originally described being compensated for by the addition to the solntiou under examination of a measured quantity of solntion of sodium nitrate of known streugth, the volume of gas yielded by the latter being deducted from the total volume obtained in the analysis. The graduated tube containing the soda solution was also cansed to dip into mercury during the evolution of the gas, to prevent loss by the " churning up" of the gas with the liquid, and the attendant escape of small bubbles from the tubo.
7. Otirato, malio, oxalio, and acemo adids were determined substantially by the methods of Schloesing, as described by Graudean.
8. Tomal nimbogen was determined by the method of Dumas, and corrected by the results of "blank" combustions made under precisely similar conditions with pure sugar. Tn the case of the tobaccos which contained no nitric acid duplicate nitrogen determinations were made by the soda-lime method, with closely accortant results.
9. Ammonid was separated from nicotine, aud determined by the excellent method of Nessler (op. oit., p. 144), namely, the ammonid was liberated with fresbly ignited pure magnesia, distilled into dilute sulphuric acid, the solution carefully neutralized with sodium carbonate, and the nicotine precipitated with mercurio-potassic iodide. The liquid was then filtered, filtrate and washings treated with an excess of sodinm mono-sulphide, the ammonia redistilled into deci-normal sulphuric acid, and the amount determined by titration.
10. Resinous and fatry substanoes.-The tobacco was exhausted, first with ether, then with absolnte alcohol, the solutions evaporated to dryness, the residue digested with dilute sulphoric acid, thoroughly washed withr water, clried at $100^{\circ} \mathrm{O}$., and weighed.
11. Clelulose (orude fiber).-The determinations were nade by the method described by Wolff. (Chem. Untersuchung landucirthschaftl. Stoffe, [3te Aufl.]: Berlin, 1875, p. 175.)
12. Aubuminords.-The figures under this heading were obtained by multiplying by 6.25 the residue left on deducting from the total nitrogen the nitrogen contained in the nicotine, ammonia, and nitric acid.
13. Mineral ingredients.-The total percentage of mineral ingredients (ash) was determined by tho method. of Schloesing, as described by Grandean (op. cit., p. 6). The sample (10 grammes) was gently heated in a platinum boat in a porcelain tube, through which a slow current of carbonic acid was conveyed, until combustible gases censed to be evolved. The combustion was then fimished in a very slow current of oxygen, the tube being kept below a visible red heatduring the whole experiment. The ash thus obtained was of about the sume consistence as that of a cigar, no sign of fusion or "fritting" being observable, and was perfectily free from unburned carbon.
14. Ash anduyses.-The ash analyses, the results of which are given in Table Ir, were made substantially by the adminable method of Bunsen (Annalen der Oenologie, i, 3. See also Thorpe, Ann. d. Chemie, cxlix, 163). The phosphoric acid was separated from the insoluble ash by tin, as recommended by Bunsen, but the tin precipitato was not further treated for the determination of the phosphoric acid, as the latter was directly determined by the molybdate method of Finkener (Berichte d. deutsch. Chem. Gesellsoh., xi, 1038), in the second portion of the insoluble ash. The separations of potassium and sodium were made in duplicate, both by the platinic chlonide and the indirect (chlorine) methods.

ANALISES OF AMERIOAN TOBACCOS．

Table I．－Peroentage composition of tobaccos，dried at $100^{\circ} 0$.

	Varloty．			$\begin{aligned} & \text { 䔾 } \\ & \text { 落 } \end{aligned}$					Malic acid（anhydride）．	Oxalic acid (anhydride).	Acetic acid（anhydride）．		$\begin{aligned} & \text { 眼 } \\ & \text { 首 } \end{aligned}$		$\begin{aligned} & \text { rag } \\ & \text { Hid } \end{aligned}$			$\begin{aligned} & \text { ⿹ㅕㅂ } \\ & \text { H } \end{aligned}$
3	Virginia；sun－cured；for manufnotaring plug tobacco．	3.26	4． 15	5． 80	0.80	10． 09	0.19	2.12	6． 02	0.84	0． 42	0.00	0.83	0.58	0.55	12.41	20.20	100.00
5	Virginia；fired－cured；for the German and continental trade；low grade．	4.80	4.65	2.75	2.75	13.00	7.46	2.84	7.58	1.08	0． 55	0.00	0.32	9.24	2.88	13．30	2＇ 213	100．00
7	Tennessee，Clarksville；fire－oured；gum－ my；for the German and English mar－ keta；soil：heary，rioh lonm．	5.29	4.09	3.54	0.00	10． 64	0.01	2.09	5． 51	1.30	0.80	1． 55	0.98	0.68	2.25	14.37	24.02	100．00
10	Kentuoky，Mason county；air－oured；for cutting or plug tobacco．	8.12	5.34	4.45	0.00	15.08	7.49	4.05	9． 26	2.18	0.04	0.00	0.48	12， 18	0.60	10．00	18． 11	100． 00
10	North Oarolina，Granville county；bright wropper；grown on whito or light gray sand．	2.70	5.73	0.71	16． 30	8.75	5.07	0.48	7.41	0.40	0.63	0.00	0.19	0.18	1.20	8． 49	25.85	100．00
28	Loulsiana＂Periquo＂tobaceo；＂cured in itsjuices．＂	4． 82	0.28	2.45	0.00	15.80	0.60	1．18	3.04	8.49	1． 62	0.00	0.70	0.08	d． 17	13.30	20.05	100.00
87	Louisiana＂Roriquo＂tobacoo aix－oured．	4.20	7．20	2.70	0.00	16． 50	7． 43	4． 8.1	7.00	2.08	0.28	1，05	1.05	8.30	0.70	15．64	10， 32	100.00
85	Connectiout Seod－Loaf，Now Milford；soil； rich lonm．	4.08	4． 20	B． 22	0.00	18.09	6.20	5.80	10.00	0.08	0.81	8． 23	0.65	10.61	1.34	15.10	10．00	100.00
30	Conneoticut Seel－Leaf，Martford；sandy soil	1.14	2． 03	8． 14	0.00	17． 13	11.24	4． 05	5． 04	0.05	0.48	2， 30	0.02	15． 23	1． 48	18． 60	14． 38	100.00
34	PonnsylvaniaSeed－Leaf；Lancaster county．	1.04	4.02	3.67	0.00	14． 02	12． 69	1.01	5.40	0.04	0.57	0.00	0.22	15.12	1.64	17，08	20． 52	100． 00
10	Ohio Soed－Lenf．．．．．．．．．．．．．．．．．．．．．．．	1.02	8． 87	3.10	0.00	15．80	7.40	8.40	6． 58	1.12	0， 42	8， 41	0.02	12.87	1.85	14.22	23.11	100．00
22	Now York State Seod．Lenf．．	2.85	3． 02	2.63	0.00	10.20	0.80	4.42	8.27	1.11	0.41	2.20	1.20	12.15	1.04	15． 50	18，60	100．00
25	Wisconsin and Inlinois Seed．Leaf．．	0.80	8.28	4.15	0.00	20.34	11.01	2．09	6． 88	1.07	0.68	1． 22	0.08	12． 07	1.63	15.43	10.06	100.00

Tablm II．－ASH ANALYSES．

	Farlety，			$\begin{aligned} & \text { 䔅 } \\ & \stackrel{\rightharpoonup}{0} \\ & \sim \end{aligned}$		息			$\begin{aligned} & \text { 胃 } \\ & \text { 首 } \end{aligned}$	Manganous oxide．		总		总
3	Firginia，sun－cured；for manufaoturing pligg tobacco．	14． 20	12．41	34， 10	0.20	31.76	7.01	0.58	1． 22	0.00	8． 81	4.00	1.30	13． 02
5	Virginia；fre－cured；for the German and con－ tinental trade；low grado．	17．42	13． 36	20． 55	0.22	30． 80	11． 61	0.95	1.81	0.00	3，23	4.27	3.20	11.21
7	Tennessee，Clarksville；fire－cured；gummy； for the German and English markets；soil： heary，rich loam．	10． 23	14.87	38． 15	0．15	36， 48	11． 85	0.51	0.05	0．25	4． 42.	0.10	3.42	4.00
10	Kentacky，Mason county；air－cured；for out－ ting or plug toloceo．	21． 85	10.06	30． 51	0.86	39.80	5． 34	1.56	0.51	0.13	8． 00	4.62	1． 20	0.48
10	North Garolina，Granville oounty；bright wrapper；grown on white or light gray sand．	11． 10	8． 49	41． 56	0.47	28． 12	0． 78	0.59	0.20	0.11	5． 23	4． 58	2.75	0． 57
37	Louisiana＂Perique＂tobacco；nir－oured（leaf deprived of midrib）．	19.82	15． 64	80． 28	0.25	37.47	12．48	1． 19	0.72	0.20	． 0.18	0.10	3． 91	3.14
36	Connecticut Seod－Leaf，Now Milford；soil： rich lonm．	21．08	16． 80	35． 08	0.01	40.38	11． 33	1.47	0.74	0.13	3.20	4.08	1.30	2． 10
30	Connecticut Seed－Leaf，Hartford；sandy boil．．	22． 02	18． 56	41.80	0， 26	28.70	7.50	2．13	0.88	0.00	3.20	3.04	1.00	11． 68
84	Ponnsplvania Sood－Leaf；Lancaster county－．．．	24， 74	17.08	40．60	0.36	28.55	8.18	1．30	1，05	0.00	5.72	2.81	1． 05	1． 40
10	Ohio Soed－Leaf	19.05	14.22	33． 87	0.27	84． 60	17.82	1.07	0.03	trace	4.20	8.48	3.07	1． 51.
22	Now Yorls State Seed－Leaf．．．．．．．．．．．．．．．．．．．．．．．	21． 12	15．50	88． 13	0.38	30.26	8.00	0.74	0.50	0.10	3.01	3.78	3． 67	0． 10
25	Wisconsin and Illinois Seed．Lenf．	20.81	15.43	88.71	1.08	33.40	12．67	0.70	0.74	trace	3.09	3.80	4.85	0.00

Tanle III．－PROPORTION OF MINERAL INGREDIENTS，TOTAL NITROGEN，AND POTASSIUM CARBONATE，IN 100 PARTS of the leaf，dried at $100^{\circ} \mathrm{C}$ ．

	Variety．	$\begin{aligned} & \text { 砒 } \\ & \stackrel{\text { H }}{\stackrel{1}{2}} \end{aligned}$	$\begin{aligned} & \text { 留 } \\ & \text { 号 } \end{aligned}$	惫	$\begin{aligned} & \text { 总 } \\ & \text { 总 } \\ & \text { Ein } \\ & \text { 胃 } \end{aligned}$		$\begin{aligned} & \text { 胃 } \\ & \text { 䴗 } \end{aligned}$				总	$\begin{aligned} & \text { 思 } \\ & \text { 宫 } \end{aligned}$		$\begin{aligned} & \text { 品 } \\ & 0 \\ & \text { C } \\ & \text { 荧 } \end{aligned}$	
3	Virginia；sun－cured；for manufacturing plug tobacco．	4.24	0.04	3.94	0.08	0.07	0.15	0.00	0.47	0.62	0.17	1．73	12，41．	3，41	1． 87
5	Virginia；firo－curod；for the German and conti－ nental trado；low grado．	3.65	0.03	4.04	1.54	0.12	0.24	0.00	0.43	0． 67	0.44	1．50	18， 80	3.21	1.41
7	Tennessen，Clarksville fire－cured；gummy；for the Gernan and Cuglish marketa；soil：rioh， hoary loam．	4.77	0.02	5． 24	1.71	0.07	0.14	0.02 ．	0.64	0.89	0.49	0.38	14.87	4.77	4.78
10	Kontuoky，Mason county；air－cured；for cutting or plug tobacco．	0.34	0.14	0． 39	0.88	0.25	0.08	0.02	0.98	0.73	0.19	0.08	18． 00	8． 40	8． 25
10	North Carolina，Granvillo county ；bright wrap－ per；grown on white or light gray sand．	3． 58	0.04	2.89	0.83	0.05	0.03	0.01	0.44	0.98	0.28	0.50	8.49	2.03	4． 21
87	Lonisinan＂Poriguo＂tobnoco；air－oured（leaf doprived of midrib）．	4.71	0.04	6． 82	1． 83	0.18	0.11	0.04	0.00	0.00	0.30	0.49	15． 64	5． 16	4.30
35	Connecticut Soed－Leaf，New Milford；soil：rich loam．	5． 30	trace	6． 10	1．71	0.22	0.11	0.02	0.48	0.62	0.21	0，33	15． 10	4． 07	0.08
30	Connectient Soed－L baf，Fartford；sandy soil．．．．	7.08	0.05	5． 33	1.40	0.40	0.15	0.00	0.01	0.62	0.20	2.14	18．68	4.10	0.06
84	Ponnsylvania Seod－Leaf；Lancaster county．．．．．	8.02	0.08	5． 13	1.47	0.25	0.10	0.00	1.03	0.47	0.18	0，27	17， 88	2.70	11.01
10	Ohio Seed－Lear．	4.75	0.04	4.83	2.40	0.15	0.13	trace	0.01	0.40	0.44	0.22	14． 22	4． 42	5． 83
23	Now York State Seed－Leaf．	5.18	0，00	6.09	1． 83	0.11	0.09	0.02	0.60	0.59	0.57	0.05	15． 60	4． 59	4． 80
25	Wisconsin and Illinois Saed．Leaf．	5.97	0.17	5.17	1.04	0.12	0.11	trace	0.48	0.60	0.72	0.15	15.42	4． 283	7.88

PEROENTAGE OF NICOTINE IN THE PRINOTPAL VARIETIES OF AMERIOAN TOBACCO．

In the following table are given the results of my determinations of nicotine on samples of the principal varieties of American tobaccos．In each case the air－dried leaves（including the midrib）were finely ground，and a careful average sample taken．The nicotine was determined on the air－dried sample by the method of Schloesing， and the percentage of moisture in a separate portion by drying at $100^{\circ} \mathrm{O}$ ．The results are stated in percentages on the sample dried at $100^{\circ} 0$ ．：

ABSORPTIVE CAPACITIES OF OERTAIN VARLETIES OF AMLRICAN TOBACCO.

The capacity of leaf tobacco to absorb and retain different flavoring substances added in the form of "sauces" is a matter of great importance to the manufacturer, and especially to the foreign importer of American tobaccos. In the following table I have given the coefficients of absorption of some of the principal varieties used for the mamufacture of chewing tobacco. These coefficients give the amount of water which each type will absorb and retain without dripping, expressed in multiples of the weight of the air-dried leaf; they do not, of comrse, represent the actual amount of water that a given sample will absorb and retain when subjected to the usual operations of manufacture. It may be safely assumed, howerer, that the results obtained in practice will stand to each othed in a relation that will not vary greatly from that indicated by the theoretical coefficionts of absorption, and the latter may, therefore, serve as a sufficient basis for classification and comparison.

The coefficients of absorption were determined as follows: The air-dried leaf was carcfully weighed, moistened with water until it had become pliable, then loosely coiled on the bottom of a beaker and water enough added to completely cover it. The whole was then left at rest for 48 hours. The leaf was then taken out, suspended over the beaker until it had ceased to drip, and weighed. The liquid in the beaker was then evaporated to dryness on the water-bath, the residual extract dried at 100 CO ., and weighed. The coefficient of absorption was determined from these data by the equation

$$
\frac{a+b-c}{c}=
$$

wherein a is the weight of the wet leaf, b the weight of the dry extract, c the weight of the dry leaf, and x the coefficient of absorption. The results were as follows, viz:

VARIATIONS IN TEEE COMPOSITION OF TOBACOOS REFERABLE TO OAUSES ATTENDING TEE GROWTH OF THE PLANT.

These are of twofold character, being due in the first place to peculiarities of climate and soil, and secondly to the special methods of cultivation employed.

Concerning the immediate effects of climate, but little is known. It would appear, from the observations of Nessler, already cited, that the tobaccos of the tropics are richer in resinous substances, while those of the north in some cases contain a larger proportion of fat. It would also appear, from the existing aualyses, that the northern tobaccos are generally richer in nicotiue than those of southern climates. Nevertheless, in defandt of analyses of the fresh tropical tobaccos, it is impossible to say that this difference may not be chiefly due to fermentative change, attended with loss of nicotine by rolatilization.

The effects of the character of the soil on the quality of the product have been much better studied. Thus the seed-leaf tobaccos of New England, which are specially prized on account of their fine texture, combined with strength and elasticity, and the entire absence of distinctive flavor, which might interfere with that of the cigar filling with which they are used as wrappers, are stated by Professor S. W. Johnson, in his admirable report on tobacco (Annual Report of the Secretary of the Connectiout State Board of Agriculture, 1873, 1. 384), to be produced only on light, sandy lands, and he adds that "if upon these very heavy crops are obtained by extra manuring, the
gain in quantity is offset by loss in quality". The peculiarities in chemical composition which especially distinguish these varieties are chiefly, as will be seen from the analyses on Table I, the larger proportion of cellulose, pectio acid, and mineral ingredients, and the smaller proportion of fatty or resinous substances and nicotine. The difference between the two samples of Connecticut Seed-Leaf, Nos. 30 and 35 , is very marked. Sample No. 30 , which was grown upon sandy soil, agrees closely in composition with the other seed-leaf varieties; whereas sample No. 35 , grown on rich and heavily manured loam (see soil analysis No. 1), approaches in its large percentage of nicotine, relatively smaller percentage of cellulose, ash, and pectic acid, more closely to the "plug" than to the seed-leaf class.

Of all the samples analyzed, however, the sample of North Oarolina "Bright Wrapper", No. 10, shows to the most surprising extent the influence of the character of the soil on the composition of the plant.

The soil on which this sample was grown was a light gray sand (see analysis, in Tables V and VI), containing, as shown by the analysis, a surprisingly small proportion of the mineral constituents available for the nutrition of the plant. On reference to the analysis on Table I, it will be seen that this tobacco contains little more than one-half of the average amount of mineral ingredients contained in the other samples, the deficiency being, as will be seen from Table III, especially noteworthy in the case of the lime, ferric oxide, and sulphuric acid. In the matter of proximate organic constituents, the tobacco is especially rich in carbo-hydrates, notably in glucose, which reaches the unprecedented figure of 16.39 per cent. Equally remarkable is the deficiency in albuminoids, which lattex substances are present in little more than haff of the average amount present in the other tobaccos.

The views at present generally obtaining regarding the physiological processes attending the growth of the plant, teach that the first organic substances formed in the leaves under the influence of light are the carbo-hydrates, starch, and glucose, and that these primary products are under the influence of the mineral ingredients absorbed from the soil, then transformed throngh further metamorphosis into secondary products such as organic acids, and with the co-operation of nitrogenous compounds (nitric acid and ammonia), also absorbed by the roots from the soil into the albuminoids and other mitrogenons constitnents of the plant. The amount of nicotine in this sample is greater than in any of the seed-leaf varieties, excepting only the sample No. 35, a fuct that would indicate that the small proportion of albuminoids is not due exclusively to deficiency in total nitrogen, but to the lack of thoso mineral constituents which are essential for the transformation of the nitrogen into albuminoids. Noteworthy in this connection is the deficiency in sulphuric acid, shown in Table III, a substance usually deemed prominent in the formation of the albuminoids.

It is of special interest in this connection to recall the results obtained by Schloesing (Oomptes-Rendus, xlix p. 253), in his ingenious and beantifal experiments for the parpose of ascertaining the effects on the composition of the plant of the reduction of the absorption of mineral ingredients by the roots, by retarding evaporation from the leaves. Two tobacco plants, each of a dry weight of 8 grammes, were placed in pots. One pot was covered with a glass bell jar through which air was drawn at the rate of 500 liters in twenty-four hours. The plant in the otherpot was left freely exposed to the air. The plants developed into a healthy growth and cach produced twelve leaves. Plant No. 1, grown under the bell jar, possessed a dry weight of 48 grammes; plant No. 2, grown in the open air, a dry weight of only 37.4 grammes. For every liter of water evaporated there was, in the case of No. 1, 5.1, and in the case of No. 2 only 1.3 grammes increase of dry substance, while the gain in mineral substances in No. 1 was 3.6 , and 5.1 grammes in No. 2. The results of the analyses of the plants obtained in these experiments. are given in the following table:

Table IV.-ANALYSES of tobaccos grown in schlorsing's experiments.
Percentage composition of leaves, dried at $100^{\circ} \mathrm{C}$.

-	Nicotine.	Oxalio acid.	Gitria acid.	Malic moid.	Pentio acid.	Resin.	Cellulose.	Staroh,	Albuminoids.	Ash.
No. 1 : grown under the glass bell.	1.32	0.44	1.91	4.88	1.78	4.00	B. 86	19.30	17. 40	9.41
No. 2, grown in the open air..	2.14	0.66	2.79	9.68	4.80	5.02	8. 87	1.00	18.00	15,28

Analyses of the ash of the whole plant.

	Total ash.	Ash, less sand and carb, aold.	Potash.	Soda.	Time.	Magnesia.	Fexric oxide.	Phoaphoric nold.	Sulphurio acid.	Ohlorine.
No. 1, prown under the glass bell.	18.00	9.41	82, 81	42, 48	5, 04	0.90	5.08	8.48	8.90
No. 2, grown in the open air.	21.80	15. 20	27.14		44.97	6. 61	1. 41	2.70	7. 68	14. 68

In the foregoing experiment the retardation of the evaporation of the water from the leares of the plant under the bell jar was attended with a diminution in the absorption of mineral ingredients from the soil. The carbo-hydrates (in this instance starch), instead of undergoing transformation into other products, accumulated to an abnormal extent. The consequence was precisely similar in character to that resulting from the deficiency of mineral ingredients in the North Carolina tobacco (No. 10), only the accumulated carbo-hydrate in the last-named instance Was sugar, whereas in the former instance it was starch, the difference in this respect being probably attributable to the difference in the other conditions of the experiment-among which perhaps the most noteworthy in this connection is the difference in the amount of albuminoids formed and in the percentage of sulphuric acid in the plant.

The differences in composition due to variations in the mode of cultivation are, apart from those arising from differences in manuring, chiefly to be referred to the greater or less length of timo that the plant is allowed to remain in the field after it has been "topped". The operation of "topping", or removing the upper portion of the stalk, is designed to stop the further growth of the plant and to direct the whole vegetative energy to storing the cells already formed with the different organic substances, such as the organic acids, etc. The troatment of the seedleaf and the smoking tobaccos in this respect is notably different from that to which the tobaccos destined for chewing are subjected. The former are allowed to remain on the stall: after "topping" until the expansion (i.e., cessation of the growth of new cellular tissue, followed by "granulation", that is to say, distension of the individnal cells from accumcrlation of cell-contents) commences, say two or three weeks, while the hearier shipping leaf is allowed to stand until fully ripe, i.e., until the verge of decay is attained. During this period the increase in the cell-contents is very marked to the cye, by reason of the greater thickness of the leaf as well as in the granulation of the surfaco enused by the distension of the individual cells.

The leaf being in both cases allowed to remain on the stalk until the expansion of the leaf, i. e., the formation of new cellular tissue ceases, it is evident that the larger proportional amount of cellulose in the seed-leaf varieties is due to a relatively more rapid production of ingredients other than cellulose in the other varieties during the period of growth subsequent to "topping" the plant. The sunaller proportion of mineral ingredients, in spite of the fact that the chewing tobaccos are usually produced on soil rich in mineral plant-food, and the disappearance of the nitric acid, which is transformed into albuminoids and nicotine, would indicate that the removal of the "tops" has operated to diminish the absorption at the roots. That the nitric acid in the tobaceo plant has entered through the process of absorption by the roots is clearly evident from the results obtained by Schloesing, and previously cited, which show that the nitric acid or nitrates are chiefly present in the midrib and in far smaller proportions in the substance of the leaf. This distribution is entirely inconsistent, with the theory of Nessler (op. cit., p. 28) that the nitric acid, as well as the ammonia, has resulted from the fermentative alteration of the allomminoids. In treating of the fermentation of tobacco it will be shown that while undoubtedly true of the ammonia, this theory is untenable in regard to the nitric acid. Meanwhile it may be mentioned that Nessler (op. cit., p. 104) statos that the total amount of nitrogen in the plant is greatest at the time of its strongest (most rapid) vegetation, i.e., the middle of Angust, diminishes gradually from that time until the beginning of September, and then appears to remain constant until the point of absolute ripeness is attained or exceeded. The carbonate of potash in the ash increases until the middle of August, the period of strongest vegetation, and after that diminishes regularly until after the point of ripeness is attained.

OHANGES IN COMPOSITION OF TOBACCO INDUCED BY CURING.

According to the nature of the tobaceo and the use to which it is to be applied, the operation of curing consists either simply in expeditious drying, with such precautions as may insure a regular progress of the operation and prevent the exudation of the juices which attends irregular and too rapid drying, or in drying preceded by or accompanied with fermentation.

As an instance of the first method may be mentioned the process of sun-curing, in which fermentation is probably reduced to a minimum. In the case of the methods of slower curing by carefully regulated artificial heat, a cortain amount of fermentation probably takes place, although as shown by the large proportion of sugar retained by some tobaccos cured by this method, the fermentation must in these cases have been exceedingly slight, and probably restricted to those portions of the leaf that have been injured so as to expose the cell-coutents to the air. The operation of slow curing by exposure to the air in barns or sheds is attended with a much greater fermentative change, accompanied by gradual oxidation, while the process of "caring in its juices"-to which Perique tobacco is subjected-represents a very thorough fermentation, with greatly reduced exposure to the air.

In order to understand the changes produced by fermentation, it is necessary to consider in detail the fermentative processes to which the different constituents of tobacco are liable.

1. Sugar.-Of all the constituents of tobacco sugar is the most liable to change. As a rule the small quantities found in the green leaf disappear completely during the process of air-curing, so that it is generally stated that cured tobacco contains no sugar. While this is true of all of the air-cured samples analyzed, the sum-cured (No. 3) and fire-cured (No. 5) contain notable proportions, while in the case of the North Carolina yellow tobacco (No. 10), the carefully regulated drying by artificial heat has probably left almost the entire amount of sugar unchanged in the leaf.
2. Ottric and malio adids.-These substances, especially in combination with bases are readily susceptible of fermentation. In the case of citric acid, Buchner (Ann. Olvem. Pharm., xxlviii, 208) found that under the action of ferments, alkaline citrates are gradmally transformed, yielding first acetates, and subsequently carbonates of the allaline base. Personne (Oomptes-Rendus, xxxvi, 197) observed that crude calcium citrate (the juice or lemons neutralized with chalk) passes rapidly into fermentation, yielding acetic and butyric acids, and that the change is still more rapid when beer yeast is added.

Dessaignes (Amn. Chem. Pharm., lxx, 102) observed the formation of succinic acid by the spontuneous fermentation of nentral calcium malate. Liebig (ibid., lxx, 363) obtained the same results throngh fermentations produced by the addition of yeast or cheese in small proportions. If the temperature or the quantity of cheese exceed a certain degree or proportion, no succinic acid is formed, or that produced is immediately decomposed and there is produced butyric acid, some acetic acid and a colorless, volatile, oily substance possessing the odor of apples, the nature of which was not further determined, but which would seem to consist of the compound ethers of the acids formed in the fermentation.
3. Albummords.-These substances as a class, and in the moist state, are very susceptible to fermentative or putrefactive change. The ouly product of this decomposition that has been observed to form during the fermentation of tobacco is ammonia, which is evolved freely during the fermentation of tobacco for sunff. While undergoing such changes the albminoids become active ferments. Pelouze (Comptes-Rondus, xliv, 118) has shown that in the absence of free mineral bases the decomposition of organic nitrogenous substances by fermentation or putrescence is unattended by the formation of nitric acid, but that, on the contrary, the nitrates, if already present, are decomposed with evolution of ammonia.
4. Nimiric adid.-In spite of the fact just mentioned, and the additional fact communicated by Pelonze and Frémy (op. cit., iv, 655) that the juice of tobaceo, in a putrescent state, decomposes nitric acid, liberating uitrous oxide, it appears that nitric acid is not changed during the fermentation of tobacco. The following analyses made at the laboratory of the government tobacco manufactory at Paris show that even the prolonged fermentation to which snuff is subjected during the operations of manufacture does not cause any perceptible change in the proportion of nitric acid contained therein :

PROPORTION OF NITRIC ACIU IN TOBACCO DURING THE DIFPEREN'T STAGES OF FERMENTATION FOR SNUFE.

Tobacno:	Por ceat. of nitrio adid.
Fermented in heaps.	0.74
First fermentation in cases	0.73
Second fermentation in cases	0.70
Third fermentation in cases	0.72
Fourth fermentation in cases	0.72

5. Other constituents.-Concerning the other constituents of tobacco there is no evidence to show that they are liable to alteration during the processes of fermentation to which tobacco is subjected during the operation of curing.

Apart, therefore, from the destruction of sugar, it is manifest from the foregoing that the changes in composition attending the fermentation of tobacco must be restricted chiefly to the albuminoids and organic acids. The change in the albuminoids can only be observed in the general effect of fermentation on the quality of the tobacco, especially when used for smoking, and its extent is only measured to a certain degree by the evolution of ammonia and the attendant reduction in the percentage of total nitrogen. For the most part the albuminoids are transformed into substances of undetermined character, according to the statement of Pelouze and Fremy, already cited, substances similar to the humus bodies. That this change has an important effect on the quality is cvident from the marked difference between the odor of the smoke of fermented and of unfermented tobaccos.

In the case of the organic acids (citric and malic acids) it will be seen from the foregoing that these acids are susceptible of several distinct species of fermentative change, of which the three following hare been observed and studied:

1. Neutral calcium malate (Dessaignes and Liebig') is decomposed, with formation of succinic acid.
2. In presence of a large quantity of ferment, or in cases where the temperature is somewhat elevated, the fermentation yields only acetic and butyric acids, and a volatile substance of fruity odor (Liebig).
3. Alkaline citrates are transformed first into acetates, and finally into carbonates of the alkaline bases (Buchner), or they are transformed into acetates and butyrates (Persomne).

In view of the fact that tobacco is very rich in albuminoids, which, when in a decomposing state form the most active ferments, the first species of'fermentation of malic acid can hardly be supposed to occur. We have, therefore, to deal solely with the second and third cases.

The extent to which differences in composition may result from differences in kind and degree of fermentation in one and the seme variety of tobace is instructively shown by the two analyses of "Perique". tobacco; the ong (28) "cured in its juices", the other (37) "air-cured". The sample "cured in its juices" contains but little over one-fourth of the citric acid, but one-half of the malic acid, and about six times the amount of acetic acid contained
in the air-cured leaf. Details are not at hand concerning the length of time the plants were, in each of these cases, allored to stand in the field after "topping", but the absence of nitrie acid from the sample "cured in its juices" and its presence in the "air-cured" sample would lead to the inference cither that the former lad been allowed to r. remain longer in the field than the latter, or that the exceptionally prolonged and thorough fermentation had resulted in the destruction of the nitric acid originally present. The smaller proportion of ash would favor the first assumption.

In the case of the Perique tobacco "cured in its juices", therefore, we have manifestly an instance of the conversion of a large proportion of both the citric wad the malic acids into acetic (and butyric) acid, and the agreeable fruity odor which this tobacco acquires during the fermentation, while partly dne to these acids, would indicate the presence of substances similar to the volatile oil obtained by Liebig during the fermentation of malic acid. It is probable that this fermentation is similar in character to that which takes place whenever the drying of the leaf is retardect, and at the same time a moderate elevation of temperature is induced either spontaneorsly or through the cautions application of artificial heat. It will be observed that the increase in the acetic acid in the foregoing instance has not kept pace with the loss in citric and malic acids. This is no doubt partly due to the volatile character of the former and to the periodical exposure to the air to which the prodnct is suljeected during the curing.

In the case of tobaccos like the foregoing, intended chiefly for chewing purposes, the object of the fermentative part of the operation of curing is chiefly to produce or develop the flavor, and this is attained by the production of volatile acids, and probably of the ethers of these acids as above described. In the case of smoking tobnccos, the object to be attained is the improvement of the odor of the smoke and also the combustibility, on which moreover the former closely depends.

The fine aroma of good smoking tobacco is dependent on an exact regulation of the operation of combustion, so that a certain quantity of empyreumatic products may be formed and no more. It is hardly necessayy to add that the nature of these products, as well as the quantity produced, depends upon the clogree of completeness of the combustion. An absolutely complete combustion of tobaceo produces only carbonic acid, water, and nitrogen, all absolutely inodorous substances. A simple destructive distillation of tobaceo, without combustion, furnishes a mixture of liquid and gaseous products most offensive in odor even in the case of fline tobacco, and absolutely dissimilar from the perfume of the same tobaceo when smoked. The operation of smoking tobacco, therefore, involves a nicely adjusted combination of destractive distillation and combustion. The more perfectly a tobaceo burns the less odor it involves in burning; on the other hand, the slower and less perfectly it burns the stronger is the odor, until the point is reached when the odor becomes simply offensive and the tobacco becomes unfit for smoking.

The changes produced in the operation of curing smoking tobacco, mnst therefore be effected primarily with a view to modifying or, as uncured tobacco is always imperfectly combustible, to increasing the combustibility.

CaUses dpon which the combustibility of tobadco depends.

Schloesing (Comptes-Rendus, 1, 642 and 1027), to whom more than to any other investigator we are indebted for our present knowledge regarding the chemistry of tobaceo, first pointed out in the year 1800 the existence of a comnection between the "combustibility" of tobacco (i. e., the property it possesses of remaining incandescent, glowing for some time after being ignited) and the percentage of potassium carbonate it yields on incineration. The conclusions attained by this author are as follows:

1. The soluble part of the ash of a combustible tobacco always contains potassium carbonate (tobacco contains, according to Schloesing, no sodium); or, in general, a tobacco is the more combustible the more alkaline the ash.
2. The soluble part of the ash of a difficultly combustible tobacco contains no potassium carbonate; it ordinarily contains lime, whence it follows that in combustible tobaccos the quantity of potash exceeds in equivalent proportion that of the sulphuric acid and chlorine, and that in difficultly combrstible tobaccos the reverse is the case.
3. A difficultly combustible tobacco becomes combustible if the potassinm salts of an organic acid (malic, citric, tartaric, oxalic, etc.) be added thereto in such quantity that the potash in the ash exceeds in equivalent porportions the sulphuric acid and chlorine.
4. A combustible tobacco becomes difficultly combustible if a mineral salt (sulphate or chloride of calcium, magnesium, ammonium, etc.) be added in such quantity that the sulphuric acid and chlorine exceed in equivalent proportions the potash in the ash.

Schloesing finds that while the presence of nitrates promotes the combustibility to a certain extent, their value is only secondary. Very combustible tobaccos have been found to be very poor in nitrates, while other, quite difficultly combustible tobaccos, were rich in nitrates.

Schloesing gives the following explanation of the results of his observations on the foregoing subject:

[^0]every one knows that a porous coal remains longer incandescent than a compact one. On the other hand, if we examine the combustion of tobaceo, e. $\eta .$, a cigar, wo will observe that the action of heat produces two classes of effects. Volatilo substances (smoko) and coal are formod, which latter chiefly sustains the combustion, as it burns out as it forms. If a cigar contains enough of those salts which, when iguited, swell up while decemposing, it will leave a porous coal, throughout which the other substances of the tolaceo are fiuely distributed, add will consequently "hold fire" for a long time. If, on the other hand, the cigar contains little or no organic potash salt, but only sulphate or chloride, neithor of which plays any role in the combustion, and if the malic, citric, ete, acids are combined with lime, the constituonts of the tobacco do not swell up in buruing, but leave a compact coal which does not long remain incandescent. In the latter case the cigar carbonizes, and the resulting coal still shows the structure of the leaf.

I will not say that in a difficultly combastible tobaceo thore are no organic potash salts, that all the potash is in the form of sulphate and chloride, but only that the combustibility of tobace is independent of its thickness, porosity, ripeness, and composition. A tobaceo, therefore, burns well if it contains onough organic potash salts; it burns badly or not at all if it contains too lititie, and the presence of carbonate of potash in the ash is a sign of the good combustibility of tobncco, as its absence is a sign of incombustibility.

The connection between the presence of carbonate of potassium in the ash and the combustibility of tobacco was also observed by Nessler (op. cit., p. 32, et seq.) almost simultaneously with Schloesing. While the results obtained by him tend in general to show, in accordance with those of Schloesing, that the ash of "combnstible" tobacco always contains a notable proportion of potassium carbonate, he has found, by quantitative determinations, that the combustibility is not so strictly proportional to the amount of potassium carbonate in the ash as Schloesing has assumed, at least not when comparison is instituted between tobaccos of different origin. Among the conditions that influence combustibility he mentions that tobacco containing larger quantities of albuminoids and fat may leave a difficultly combustible coal that will only then burn when much potash is present; and, on the other hand, that those tobaccos burn best that contain the most; woody fiber.

Concerning the explanations of Schloesing in regard to the nature of the effect exerted by potassinm carbonate in the ash, or rather by the substances that leare potassium carbonate on incineration, on the combustibility of the tobacco, Nessler mentions the following objections, based in part on his own observations and experiments:

First. In the case of slips of paper, as well as those of tobacco, the combustibility is essentially promoted by saturating them with carbonate or sulphate of potassium. A formation of organic potassium salts is in this case only possible when tobacco is impregnated with potassium carbonate, but not when the paper is so treated, and not when tobacco is treated with potassium sulphate.

Second. A swelling up of the coal behind the incandescent part, such as Schloesing assumes, is a sign of a bad and not of a good tobacco.

Third. Acetates of the alkalies do not swell up, or at least hardly do so, and nevertheless promote combustibility like the carbonates.

It will be observed that the anthorities just cited admit two conditions as conducive to the perfect combustibility of tobacco, namely:

1. The presence of a notable proportion of potassium carbonato in the ash. (Schloesing-Nessler.)
2. The presence of a large proportion of woody fiber in the tobacco. (Nessler.)

Concerning these points it is to be observed that the presence of a larger proportion of woody fiber is equiralent to the presence of a smaller proportion of the other constituents of the leaf, and on reference to the analyses on Table I it will be seen that the seed-leaf varieties are especially rich in cellulose (crude fiber), while the chewing varieties, with the sole exception of the Kentucks tobacco, No. 19, are relatively poor therein.

Coucerning the presence of potassium carbonate in the ash, it will be seen from Table IIIthatgreat variations exist in the amounts yielded by the different samples, but that the seed-leaf varieties yield more potassium carbonate than the others, with the sole exception of No. 19. But among the seed-leaf varieties themselves the amount of carbonate of potash furmished on incineration does not stand in any simple relation to the combustibility, as will be seen from the following instances in which the combustibility was determined by the method of Nessier (op. cit., 1. 65): Pieces 1. to $\frac{1}{2}$ inch wide were cut from the middle of each leaf, running from the edge to the midrib and avoiding the lateral ribs. These were pressed flat by gentle pressure after slight moistening, and exposed to the air for forty-eight hours. The strips were then ignited on the end, and the lapse of time noted between the first ignition and the extinction of the spark or glowing edge; the burnt edge was then removed with the scissors and the slip reignited, the operation being repeated until the whole slip had been burned from the edge to the midrib; the mean of the observations for the whole slip was then taken. When six slips had been burned, the maximum, minimum, and mean of the series were noted. The results of these tests, while showing great diversities in the combustibility of even different leaves from the same sample, were nevertheless in a measure characteristically distinct for the different brands.

Especially interesting were the results obtained with the samples of Oonnecticut Seed-Leaf, viz: No. 30 (Hartford), burned to end of strip 120-160 seconds; No. 35 (New Milford) maximum 16.0, minimum 2.7, mean 7.8 seconds. As will be seen from Table III, these samples yielded, on incineration, the same percentage of potassium carbonate. The percentage of cellulose is greater in No. 30 ; the percentage of citric and malic acids is greater in No. 35. This latter fact would suggest that a difference in the character of the organic salts, and especially a difference in the relative proportions of acids and bases therein, might have something to do with this marked difference in combustibility. As we are still ignorant of the modes of combination in which the mineralingredients
exist in the plant, and as we are still in uncertainty as to the chemical character (whether acid or indifferent) of the hitherto unstudied constituents of the leaf, it is not possible to say, with any certainty, from the results of the analysis, or even from the examination of the extracts or decoctions of the plant, precisely in what state of combination the constituents may have existed in the interior of the vegetable cell. Nevertheless, it is of some interest to compare the respective equivalence of the acids and bases found in the analysis with a view of ascertaining if this proportion bears any relation to the combustibility of the leaf. The equivalence is obtained by dividing the percentage of each ingredient by its molecular weight and multiplying thequotient by the atomicity. If we then deduct from the sum of the equivalents of the inorganic bases the sum of the equivalents of the inorganic acids of the ash, we have as the residue the equivalence of the inorganic bases (potash, soda, lime, etc.), that are to be compared with the organic acids and nitric acid of the plant. The equivalent ratio therefore expresses the relative equivalence of the organic acids and nitric acid (taken as unity) with that of the inorganic bases with which these acids may be supposed to be combined. Applying this process to samples Nos. 30 and 35, we have:

$$
\begin{aligned}
& 35
\end{aligned}
$$

From the foregoing it will be seen that the sample No. 30 contains a large excess of bases over the amount requisite to form neutral salts with the acids named above, or, in other words, the quantity of mineral bases in the sample No. 30, after deducting the amount required to form neutral salts with the inorganic acids of the ash, is about one-third greater than is required to form neutral salts with the organic acids and nitric acid of the leaf; whereas in the sample No. 35 the proportion of bases is less than is required to form neutral salts.

In this and the following calculations, both ammonia and nicotine are omitted, as on account of the volatility and readily decomposable character of the organic salts of these bases, and their relatively small amount, they cannot be supposed to materially affect the combustibility of the tobacco. Nitric acid has been included with the organic acids, for the reason that it is readily decomposed in contact with organic matter, and at a low heat, and, like the organic acids, leaves the base with which it was combined in the state of carbonate.

On the following table are given the equivalent ratios, proportions of potassium carbonate, aud, for comparison, also the proportions of nitric acid, together with the results of the burning tests, for sample No. 37 and the different seed-leaf varieties:

RELATLONS BLTWEEN EQUIVALENT RATIOS AND BURNING QUALITIES.

Number.	$\begin{aligned} & \text { Nitrio } \\ & \text { aold, } \end{aligned}$	Potassium carbouato.	Equivalent cation.	Burning tests,
			Acids. Bages.	Max. Min. Afean.
37.	1.65	4.30	1 : 1.005	$3.0 \quad 2.0 \quad 2.4$ seconds.
35.	3.23	0.08	1 : 0.970	10.0 $0.7 \quad 7.8$ seconds.
80.	2.39	0,00	1 : 1.345	To end of strip, 120 to 160 soconds.
84.	0.00	11. 01	$1: 1.703$	To end of strip, 110 to 120 seconds.
16.	3.41	5. 88	1 : 1.100	To ond of strip, 80 to 230 seconds. Mar, Min. Mean.
22.	2. 20	4.86	1 : 0.978	
25.	1.22	7.83	1 : 1.380	100.5 $54.5 \quad 71.3$ seconds.

The results communicated on the foregoing table show unmistakably the existence of a relation between the combustibility and the relative proportions of acids and bases present in the leaf. In general, those samples burn best wherein the excess of bases is most marked, and it will be seen that the relative combustibility is independent of the proportion of potassinm carbonate the leaf yields, on incineration, and, to a large extent, of the proportion of the nitric acid; nevertheless, the effects of the latter are quite apparent in the sample No. 16. In Nos. 25 and 30, while the equivalent ratios are uearly equal, the degree of combustibility-althongh both burn well-is quite different, possibly owing to the much larger percentage of albuminoids in No. 25. Sample No. 22 was composed of leaves of very diverse appearance, mostly dark in color, but sometimes light. One leaf, however, was very light and thin, and this specimen, as stated, burned to the end of the strip. The reactions of the aqueous extracts of these samples to test papers were as follows: No. 35 , acid; Nos. 16, 22, and 37, nentral; Nos. 25, 30, and 34, alkaline. No. 34 was strongly alkaline.

The foregoing results would appear to indicate that the rational conduct of the operation of curing smoking tobaccos, and especially the seed-leaf varieties, would involve the destruction of a larger proportion of the organic acids (citric and malic acids) by fermentation, the operation being in some instances carried to the extent of transforming the salts of these acids, in part, into carbonates. It is hardly necessary to say that this operation would result in setting free a large proportion of the nicotine, which would volatilize during the process.

Nessler (op. cit., p. 138), to improve the combustibility of tobacco, recommends thatit should be moistened with a solution of acetate, or better, carbonate of potassium, adding "the best result was always obtained with an aqueous solution of potassium carbonate".

While it is quite conceivable that a marlsed improvement should be attained by adding potassium acetate to tobaceo containing an excess of citric or malic acids, inasmuch as these acids would displace the acetic acid, it is improbable that any good result should accrue from the addition of alkaline citrates or malates on the general principle of increasing the percentage of organic salts in the tobacco, inasmuch as it is evident from the foregoing results that an increase in the absolute amount of citric and malic acids has a disadvantageous effect on the combustibility of the tobacco.

ANALYSES OF TOBACCO SOILS.

These analyses of soils were made on samples from: First, the Housatonic valley, at New Milford, Connecticut; second, the Clarksville district, Montgomery county, Tennessee, which produces the best variety of "shipping" or "export" tobacco; and third, Granville, North Carolina, where the best variety of the North Carolina Lemon Yellow tobacco is grown. The two samples last named were furnished by Colonel Killebrew, and, according to him, are fairly representative specimens of the best varieties of these respective soils. The first sample was taken by myself at New Milford, from a field which, according to my informant (Mr. Isanc B. Bristol), produces the best quality of Housatonic Valley Seed-Leaf tobacco.

The general character of the samples was as follows:
No. 1. New Milford, Connecticut.-Hill soil. Rich, dark loam, somewhat sandy in character. Average depth, about 12 inches, with loamy subsoil extending to the bed-rock (gneiss). Geological character of the surrounding rocks: Granite, gneiss, and mica, and hornblende slates. The rock fragments found in tho sample wero ehiefly granite, quartzite, mica slate, and, more rarely, hornblende slate. The field had been under enltivation six years, exclusively on tobacco. Average yield, 1,500 to 1,800 pounds (dry weight) per acre of tobaceo of fine quality. Manured in the spring with 50 cart-loads of barnyard and stable mantre per acre. The sample was taken November 30,1880 . The last application of manure was in the spring of the same year.

No. 2. Clarksville, Montgomery county, Tennessec.-Virgin soil. Rich, dark, clayey loam. Avernge depth 5 to 6 inches. Incumbent upon a highly ferruginous clay, the latter being intercalated with beds of chert, varying from 1 to 3 feet in thickness. According to Colonel Killebrew this soil belongs, geologically, to the Lithostrotian bed of the Siliceous group of the Lower Carboniferous formation. The small quantity of rook frugments contained in the sample consisted chiefly of lighly decomposed feldspar. The land adjoining the woods where this sample was taken, produced, when first opened, 1,500 pounds of most excellent tobacco per acre, and has contimed to produce it, in rotation with wheat and clover, for twenty-two years, with but little diminution in fertility. Tho Clarksville tobacco, marked No. 7 on the schedules of tobacco analyses (Tables I to III), is, accoriding to Oolonel Killebrew, fairly illustrative of the character of that produced upon this soil.

No. 3. Granville, North Oarolina.-Light, gray sand, with porous cream-colored subsoil. According to Colonel Killebrew this soil belongs to the Lamentine series of the Archran age, and is derived from grunitoid rocks and quartzites. Numerous trap or intmsive rocks are found in the vicinity, but the soil arising from the disintegution of these will not produce the yellow tobacco, nor does this tobacco attain a high degree of excellence on soils containing much ferric oxide. When the subsoil is red or clayey, heavy tobaceo will grow, but not the yollow leaf. The rock fragments found in the sample consisted chiefly of quartz. The field from which the samplo was taken had been used for tobacco for six years in succession, but was previonsly an "old fiold" that had been exhausted by long cultivation and allowed to lie untilled for some 14 years previons to being used for tobaceo, and had become covered with "old-field pines" (Pinus teda, Michaux), persimmon bushes, etc. Concerning the manuring to which this field was subjected, I quote the following from Colonel Killebrew: "The soil is simply a sponge, into which just enough fertilizing matter is put to bring the plants to the proper size, and no more."

METHODS OT ANALYSIS.

1. Meceantoal analysis.-In the mechanical analysis of soils, which operation has for its object the separation of the particles of the soil according to their size and the determination of the proportional quantity of the particles of different sizes, the following method was adopted, viz:

The whole sample was first passed through a sieve of perforated metal having holes of 3 millimeters in diameter, The weight of the particles remaining or the sieve was then determined and also that of the portion passing through the sieve ("find earth"). The last-named portion constituted the material for all of the subsefuent operations of mechanical and chemical analysis.

Thirty grammes of the "fine earth" were boiled out repeatedly with water, as recommended by Wolff (Ohem. Untersuohung landwirthschaftlicher Stoffe: Berlin, Wiegant \& Hempel [3te Aufl.], 1875, p. 4), until the lumps were disintegrated and the clayey portions separated from the sand. The material was then successively washed through perforated metal sieves, the holes in which were respectively $1^{\mathrm{mm}}, 0.5^{\mathrm{nm}}$, and 0.25^{mm} in diameter. The portions
retained on the sieves were severally dried, ignited and weighed, and the finest portion, or that passing through the 0.25^{mm} sieve was then submitted to the following process of separation, which is based upon the method of Knop, as described by Wolff (op. cit., p. 10), but perfected by the employment of the principle of fractional separation.

The sediment and water passing throngh the 0.25^{mm} sieve were placed in a glass cylinder 53 centimeters long and 37 mm in internal diameter. The cylinder was closed at the bottom and was provided with a lateral tube inserted 6 centimeters above the bottom. Three other lateral tubes were inserted at intervals of 10 centimeters above the first tube, and a ling was etched into the cylinder 10 centimeters above the uppermost tube. The lateral tubes were closed with rubber tubes compressed by spring clips. The sediment being placed in the cylinder, water was added to the mark or ring, tho cylinder closed with a rubber stopper, and vigorousty shaizen until the contents were thoroughly mixed. It was then placed upright, the stopper removed, and after standing undisturbed forfive minutes the clip on the uppermost tubo was opened and the water allowed to flow into a beaker. After five minutes further standing, the second clip was opened and the water drawn off into the same beaker; in the same manner the water was diawn off from the other tubes at intervals of five minutes until the level of the lowest tube aras reached. The cylinder was then refilled with water to the mark, thoroughly slaken after inserting the stopper and the water again drawn off at intervals of five minutes, as before; the operation being repeated until the water drawn off was almost free from tubidity. The sediment remaining in the cylinder from this process of washing by subsiclence is termed ly Knop, "fine sand", the material flowing off in suspension in the washing waters "dust", and the process of separation by Knop's original method ends here.

A little reflection will show that as far as a separation into particles of definite size is concerned, the foregoing method is very imperfect. While the repented agitation of the sediment from each washing with fresh additions of water tends to remove the objection noted by E. W. Hilgard (Silliman's Journal, 1873, [3] vi, 288, 333) in his. admirable paper on silt analysis, and to which all methods of continuous washing known previons to the invention of the method of Hilgarl weresulyject, viz, the tendency of the particles of clay to ball together and sink with the coarser particles even in opposition to upward currents of water, it is nevertheless attended with the following defect to which Hilgurd's method is also hable, and which, as far as the author is aware, has not hitherto received sufficient attention. In the case of a quiescent body of water containing suspended sediment, the particles of the latter sink to the bottom with varying degrees of rapidity, proportional to their size and specific gravity, or, as the mineral constituents of soils do not, for the most part, differ very greatly among themselves in specific gravity, chiefly proportional to their size. In course of their descent, however, the more swiftly descending particles collide with the more slowly descending, or, as we may say, "liglter" particles. The rate of descent is therefore influenced not only by the relative size of the particles of suspended matter, but also by the number and force of these collisions. These two last-named conditions vary according to the difference in size (and specific gravity) of the particles and also according to the relative number of the particles of each different size. It is evident, therefore, that the error arising from the cause just mentioned is not constant, but that it must vary in amount according to the specific character of each sediment, and that the results of separations by simple subsidence can never afford a basis for an exact comparison in the matter of the state of subdivision of sediments of diverse origin aud differing in the relative proportions of the particles of the different sizes. The conditions above instanced as obtaining in the case of a subsidence from a liquid in a quiescent state, obtain with equal force in the case of subsidence from slowly moving upward currents, and undoubtedly constitute a source of material error in all methods of mechanical analysis by continuous subsidence.

In the mothod pursued by the author the defect above noted was obviated by the following means:
The "fine sand" from the first series of subsidences was placed in a separate vessel, the washings were allowed to remain undisturbed for twelve hours, the turbid liquid decanted off, and the sediment returned to the cylinder. Water was then added to the mark, the whole shaken up, and the liquid drawn off at intervals of five minutes, as in the first series. The sediment from this operation was placed in a separate beaker, the liquid "washings" returned to the cylinder, and a gain subsided as before; the sediment from this second subsidence was added to that from the preceding operation and the washings again returned to the cylinder, the operation being repeated as long as any sediment could bo obtained from renewed treatment of the washings; the final washings were then placed in a separate vessel for subsequent microscopic measurements.

The collective sediments from the last series of operations were then returned to the cylinder and subsided with fresh additions of water, as in the case of the first series; the "fine sand" thus obtained being added to that from the first series, and the washings being collected in a large beaker. The latter were left at rest for twelve hours, and the sediment returned to the cylinder and treated as before until no further separation could be effected. The " fine sand" resulting from all of these operations was then dried, ignited, and weighed; the weight of the portion removed by the washing being determined by difference, as it was, owing to its excessively slow rate of subsidence, found impracticable to collect it for direct weighing. The size of the particles of "fine sand" was then determined by micrometric measurement, and was found to vary from 0.25^{mm} to 0.009^{mm} average diameter. Similar measurements were made on the material obtained by long subsidence from the washings from the foregoing operations, with the result of showing that the average diameter of the largest particles did not exceed 0.01^{min}.

The results of the foregoing processes of mechanical analysis were then computed in percentages on the ignited ：soil，and are given in the following table：

Table Y．－Meceanical analyses of Tobacco sotis．
［Computed in percentages on the ignited soil．］

2．Chemidal analyses．－The chemical analyses of the＂fine earth＂embrace analyses of the extracts obtained by treating，frst，the air－dried soil with cold hydrochloric acid；second，with hot hydrochloric acid；third，by treating the residue insoluble in hot hydrochloric acid with sulphuric acid，and analyses of the residues insolnble in sulphuric acid．The acid extracts were prepared according to the directions of Wolff（op．cit．，p． 12 et．seq．），and the analyses were made substantially according to the method of the author in question，with the exception of the analyses of the residues insoluble in sulphuric acid，which were made by the usual method of silicate analyses （fasion），the alkalies being determined by the method of Professor J．Lawrence Smith，

The results of the analyses are given in the following table，in which the method of Wolff has been in so far departed from that the horizontal columns of figures headed＂soluble in hot hydrochloric acid＂，in lien of representing the total substances extracted from the airdried soil by hot hydrochloric acid，represent the constituents soluble in hot but insoluble in cold hydrochloric acid，while the horizontal columns headed＂total＂ and printed in heavy type represent the percentage composition of the air－dried soils irrespective of the degree of solubility of the constituents．

TABLE VI．－CHEMICAT ANALYSES OF TOBACCO SOILS．

				总安告空き見宝感。宣䀚 	$\begin{aligned} & \text { 范 } \\ & \text { 花 } \\ & \text { 曷 } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 类 } \\ & \text { 曾 } \end{aligned}$		渭		$\begin{aligned} & \text { 駡 } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \text { 霖 } \\ & \text { on } \end{aligned}$			\％
new milfoti，connecticut．														＂
Moisture at $100{ }^{\circ} \mathrm{C}$ ．	1． 8200													1． 8200
Organio and volatile aubatances		6． 8800												0.8000
Soluble in cold hyylrochlorio acid．			0.0585	（8）	3． 1483	8.4690	0.0173	0.2838	0.7047	0.1801	0.0074	0． 1084	0.0378	8． 1623
Soluble in hot hydrochloric coid．			0.0724	4． 2420	0.3833	1.2009	0.0000	0.0404	0.0205	0．0403	0．0072	0． 0218	0.0378	0.1782
Soluble in sulphurio nofa．			0.0000	1． 0188	0.0320	2.6121	0.0000	0． 1630	0.0738	0.3767	0.0027	0．0000	0.0000	4． 2707
Insoluble in acids．				9032	0． 8540	7.1694	0.0000	1．3658	0.4302	1.8155	1． 5432	0.0740	0.0000	73．0102
Total．	1.8200	6，8600	65.3	505	4.4132	14，3513	0.0178	1.8581	1，2842	1.0240	1.5605	0.2951	0.0750	100，3104
clarksyidic，thenesbee．														
Moisture at 1000 C	1，3500													1． 3560
－Organio aud volatile substancos		4.3450												4.3450
Soluble in cold hydrochlorio acid．			0.0338	（1）	1．5800	1.4000	0.0873	0.2270	0.1218	0.0445	0． 0018	0.0711	0.0105	3． 5784
Soluble in hot hydrochlorie acid．			0.0608	3． 2308	0.3167	1． 8001	0． 2104	0.0680	0.0714	0.0730	0.0018	0.0105	0．0009	6． 8640
Soluble in sulphuric acid．			0.0000	2.7239	0.1701	3．3385	0.0000	0.0547	0.0951	0.2501	0.0281	0.0000	0.0000	0．6065
Trsoluble in acids．					0.3835	2.2123	0.0000	0．2i72	0.1020	1.6484	0.2654	0.0567	0.0000	78．7685
Tutal	1.8500	4.3450	79.8	8978	2.4303	8.7515	0.3037	0,6268	0.3803	2，0220	0.2060	0.1383	0.014	100.5033
gilanyllik，north carohina．														
Molsture at 1000 C	0.6850													0.0050
－Organic and volatilo substances		1． 2050												1． 2050
Soluble in cold hydrochlorio acid．			0.0060	（3）	0.1775	0.3523	0.0052	0.0833	0.0098	0.0115	0.0033	0.0203	0.0000	0． 6488
Soluble in hot hydrochlorio aeid．			0.1209	0.7921	0.2115	0.4787	0.0365	0.0174	0.0128	0.0040	0.0012	0.0000	0.0050	1．6847
Soluble in sulphurio notid．			0.0000	0.3818	0.1542	0.8057	0．0000	0.0305	0.0044	0.0767	0.0016	0,0000	0.0000	1． 5440
Inseluble in reids．				1932	0.0843	0.7748	0.0000	0.1318	i． 0577	0.4117	0.2831	0.0176	0.0000	08.0641
Total	0.6050	1.2050	188.5	085	0.6275	2.4965	0.0417	0.2330	0．0847	0.5045	0.2812	0.0370	0.0140	80，7025

INDEX TO TOBACCO OULTURE.

Page.
Cumberland River district of Kontucky 61-63
cost of Iabor and produetion in 63
geology and soil formations of 62
topography of 61
types produced (table) 61
value of crop of 1879 (talule) 61variaties grown.
D.
Dakota, tobacco crop of, by counties (table) 4
Dauphin county, Ponnsylvania 165
Delaware, tobaceo crop of, by counties (table) 4
Denmark, tobacco for export to
23, 24
Description of tobreco (table)
261, 262
Diseases of the tobacco plant, general
110
110
in Now York.
in Now York.
119
119
North Carolina. 146
Pennsylvania 162
Virginia 411
West Virginia. 233
Distribution of constituonts of tobacco plant 266
English shippers 19, 20
Export tobaceo 19-23
Fertilization of tobacco in West Tennessee 174
Fertilizers, tobneco, in North Caroliua 113,114
Virginia 201, 202
Wisconsin 233
(see also Minnures.) stalka as 161,162
Fillers, Are-cured 18
Irish 20
Missouri 18
plag 20
Red Burloy 18
Tonnessee and Kentucky, air-cured 19
Virginia. 18
Fins-cut, Mason county, Kentucky 18
Tlorida, cost of raising tobacco in 31
culture and curing of tobacco in 29-32
progress of tolvaceo culture in 29
rank of, in acreage, production, etc. (trable) 2 2
seed-leaf. 17
tolbacco orop of, by counties (table) 4
varioties of tobacco grown in 30
Flues and flue-curing in North Carolina 116-118
Freach types of tobacco 20
G.
Geological and physical features of Indiana. 38, 39
formations of Miami palloy (table) 133-135
New England toloaceo district.....239-241White Burley district of Kentucky. 73,74
Geology, etc., of Clanksville district of Kentucky 59,60
Cumberland River district of Kentucky 62, 63
Lowor Green River district of Kentucky 52 Maryland (table) 88
North Carolina tobacco region (table) 121-125
Ohio 126
Ohio River district of Kentacky 49
Paducah district of Kentucky 44-46
Pennsylvania 148
Tennesseb 168-172
Upper Green River district of Kentueky 56, 57
West Virginia 926
Georgia, tobacco crop of, by counties (table) 4
German Sancer 21
Spinner 21
Grades of tobacco in New York 104
North Carolina 119
West Tennessee (table) 173,174
Wisconsin 232
Green River district of Kentucky 54, 55Page.
cost of production in. 55
geology and soil formations of 54
HI.
Hailstorms in North Carolina 119
Harvesting tobacco in Kentucky 77
Maryland 91
Tennesseo 183,184
Hayana tobacco, American-grown 17
cost of growing in New Englanil 253
sead 16, 17
Heary tobacco district of Miscouri 90
variotios grown in 98
Fickman county, Kentucky, description of 45
Fistory, agricultural and statistical, of tobacco in Virginia(tables).212-285
of culture in Miami valley (table) $.132,133$
tobacco in Kentneky 42-44
types in Maryland and Virginia 102-194
Holland, tobacco For export to 22
Housatomic valley, cost of tobacco production in 253,253
value of tobaceo lands in. 253
I.
Idaho, tobaeco crop of, by counties 4
Illinuis, climate of. 33
culture and curing of tobaceo in 32-37
production, etc., of tobacco in, 1876 to 1879 , inclu- sive (tables) 37
rank of, in acreage, production, otc. (table) 2
seed-loaf district of (tables) $34-36$
slimping-leat district of 36,37
tobacco crop of, by counties (table) 5
Illustrations
Barns $35,106,107,155,156,181,182,194,248$
"Bents" 247
Bulks in New England. 250
Carotte of Porique tobaceo. 85
Field seaffolds 152,184
Flues 193
"Horse" in Now England 246
Laths 153
with tripod 154
Machinery for straightening tobaceo 208
Packing. 186,187
Poles 247
Presses and prizes $187,188,240$
Spearing 91
Sticking. 184
Stringing 143.
Wagon 154
Indiana, culture and euring of tobacco in 38-42
geological and plyysical features of 38,39
meteorology of. 39
production, ctc., of tobacco in, 1876 to 1879 , inclu sive (table) 42
rank of, in acreage, production, ete. (trble) 2
soil of 40
tobacco crop of, by countios (table) 5
varioties of tobacco grown in 39
Insect enemies of tolereco $50,119,146,229,234,258-261$
Inspection of tobacco in Pennsylvania 161
Iowa, tobacco crop of, by counties (table) 6
Italian Regie types 20,21
K.
Kansas, tobacco crop of, by counties (table) 6
Kentacky, assorting and stripping tobaceo in 78

Kentucky, history of tobacco in...................................... 42 Page. 44 preparation of soil for tobacco preparation of soil for tobaceo
rank of, in acreage, production, ete. (table)...... statistics of tobacco orops, census years 1840 to 1880 , statistics of tobacco orops, census years 1840 to 1880,
inclusivo 42 77
2 crop of, by counties (table) ... 6 districts of 42
6 44
Kerr, Professor, roport on geology and soils of tobace region of North Carolina 121
IKite-Foot tobacco of Indiana 18
L.
Labor and wages in Ponnsylvania. 158,159
Lancaster county, Penusylvania. 148-163
by whom tobacco is onltivated in 159-261
geologioal featrures of 149
insurance of crops and baris. 162
situation and extont of. 149
soils of '149
timber land of. 162
varioties of tobacco cultivated. 150
wide or close planting 163
Lobanon county, Pennnsylvania 165, 166
Louisiana, climate and rainfall of 81
culture and euring tobaceo in 80-87
historical notes. 80, 81
production of tobaceo in (table) 87
soils cultivated in tobaceo other than Perique 87
tobacco crop of, by parishes (table)
51-54
Loxvor Green River district of Kentucky
52, 53
geology and soil formations of. 53
production, ete., of tobnceo in, 1876 to 1879 , inclusive (table) 54
topography of 51
types of tobacco produced in.
17, 18
Tugs, common.
17
White Burley. Mr.
Maine, tobacco crof of, by counties (table)Mnnures (see also Fertilizers).
thoir application in New Eng-land (table) 243
tobacco, in Now York 105
Maps, type 23
Marshall county, Kentueky, desoription of. 46
Macyland, cigar tobacco of. 93
cost of raising tolaceo in.
87-93
culture and curing of tobacco in. $87-93$
93
fertilizers for tobacco in 89,90
geology, topography, and soils of (table) 88,89
harvesting and housing tobacco in 91
houses for tobaceo in. 91
plant-beds in 90
proparation of soil for tobacco eultivation 90
priming, suckering, and topping tobecco in 91
production, etc. , of tobacco in, 1846 to 1879 , inclu- sive (table) 93
rank of, in tereage, prodnction, ete. (table) 2
selling tobacco in. 93
spangled tobacco of 21.
stripping, assorting, and bulking tobacco in. 92
tobacco crop of, by counties (table). 7
varieties of tobaceo cultivaterl in, 89
Massachnsetts, cost of producing tobacco in.. 253, 254
rank of, in acreage, production, etc. (table).. 2
8tobacco crop of, by counties
MeCracken county, Kontucky, doscription of 45
Moxico, tobaceo for export to.
132, 133
Miami valley, history of tobacco culture in (table)
Michigan, toloacco crop of, by counties (table).8
8

Mississippi, tobacco arop of luy countios (table) Page
Mi 8
Missouri, character of product and proportion of grades..... 94, 96 climato of. 96
cost of mrowing tobacco in. 10L, 102
culture and curing of tobacco in 94-102
handling tobacco crop in 99
heary tobaceo district of 96
kinds of soil preforred for tobscco in 97,98
manufaoturing tolaceo district of. 96,97
production of tobneco in, 1876 to 1879 , inclu- sive (table). 97
varioties grown in (tables) 98, 09
physical foatures and soils of. 94, 95
plauting and cultivation of tobaceo in. 99
production of tobacco in, 1876 to 1879 , inclusive. 94
rank of, in acreage, production, etc. (table) - 2
strips. 101
tobacco crop of, by comnties (table). 9
value of tobacco crop in 102
jield of tobacco in 102
Moore, Professor Gideon E., report on chemistry of American tobace 264-280
N.
Nebraska, tobacco crop of, by counties. 9
New England, assorting, handling, and preparing tobaceo
for markel in. 249,250
climate of 241
cost of tobacco production in. 252-255
cutting and curing in. 246
forest growth of tobacco lands of.: 241
geological formations and soils 239-241
historical notes 237, 238
localitics of tohacco production and compari-son of recont cropsin241, 242
manures for tobacco in, and their application (table) 243
pole-sweat in. 249
preparation of soil in. 244, 245
prices of tolbacco (tables) 251
production, ete., of tolbacco in, census years
1840 to 1880 , inclusive (tables)238, 239, 255
quality of tobacco grown in 255
rotation of crops in 243
seed-leaf. 16
sheds and barns for tobacco. 247, 248
surface features of 239
sweating tobacco in 250,251
tobacco-growing district of. 237-255
topping, priming, suckering, and worming in . 245,246
varieties of tobacco grown in. 242,243
vontilation and curing in. 248, 249
Nevada, tobacco crop of, by counties (table). 9
New Hampshire, cost of tobacoo production in 254,255
rank of, in aereage, production, etc. (table). 2
to bacco crop of, by counties (table) 9
New Jersey, tobacco crop of, by counties (table). 9
New Mexico, tobacco crop of, by counties (table). 10
New York, assorting of tobacoo in 108
boxes for tobaceo in 108
climate of 1.03
comparison of recent tobacco erops of 104
culture and curing of tobacco in $.103-110$
cutting tobacco in 106
diseases of the tobacco plantin. 110
grades of tobacco produced in 10.1
labor, cost of 110
manures for tobacco soils in 105
prices of tobaceo lands in. 109
production, etc., of tolaceo in, 1866 to 1879 , inclu- sive (table). 110
range of prices of tobacco in 108
rank of, in acreage, production, etc. (table) 2

Page.	Page.
New York, sampling tobaceo in 109	Ohio, seed-beds in-.........-............. . 130
seed-leaf tobacco of................................. 16	seed-leaf district of (tables) . 132-140
selling tobacco in 108,109	tobacco of ...-......... 17
sheds for tobacco inn. 106, 107	soils of tho Spangled districtof.......................... 141
soils suited for tobacco in...... 104,105	Spangled, or Eastern tobacco district of 141-146
sweating and shrinkage of tobacco in 109	spangled tobacco of...................................... 21
tobacco crop of, by counties........................ 10	stringing tobacco in .---. .-............-................ 143
where sold 109	suckering, cutting, and curing tobacoo in130, 131, 143
topping and suckering tobacco in 106	tobacco crop of, by counties (table) 11
valne of the last tobacco crop of 108	topping tobacco in.............-.......................... 130
varieties of tobacco grown in 104	varieties of tobacco grown in............................ 128, 135
Nicotine, percentage of, in the principal Varieties of American	wages of tobacco-lands in ..-... 146
tobacco...-....................................... 270	Ohio River district of Kentucky . 48-50
proportion of, in leaf-tobacco....-..-. 266	cost of producing tobacco in 50
Nitric acid, proportion of, in tobaceo........................ 266,274	general facts and statistics of 50
North Carolina, analyses of tobacco soils of (table) 125	geology of....-.. 49
assorting tobacco in 118	insect enemies and diseases of tobacco in.............. 50
average value of tobacco in-.-......... 119	soils of-........................ 49
baras for tobacco in.............-............ 116	topography of... 18
cost of tobacco production in...........120, 121	types of tobacco produced in. 48
cuiture and curing of tolacco in110-125	variotios of tobacco grown in 48
cutting tobacco in.......................... 115,116	Oregon, tobaceo crop of, by counties (table)................... 11
diseases of tobacoo in...... 119	P.
flues and tue-curing of tobacco in116-118	Packing tobacco... $157,158,186,187$
geology and soils of (table)...... 121-125	Padncal, or Western district of Kentucky. $14-48$
grades of tobacco in 119	classification of types of tobneco in..................... 46
hailstorms in, injury to tobacco crop by 119	cost of tobacco production in.............................. 47
insect encmies of tobacco plant in............ 119	prices of tobacco in(table) 46
marketing tobacco crop in.........----...... 1	value of tobaceo crop in.................................... 46
plug wrappers of 19	Pennsylvania, barns for tobacco in....... $155-157$
priming, suckering, and topping tobacco in. 115	climate of... 148
production, etc., of tobaceo in, 1876 to 1870,	cost and profit of tobacco growing in159-161
inclusive (table).............................. 121	cultivation of tobacco in colonial times 147
progress of the tobacco industry in 111	recent years......... 147
rank of, in acreage, production, etc. (table). 2	culture and curing of tobneco in 147-107
ripening tobacco in 115	cutting the tobacco crop in 152
rotation of crops in.......................... 114	field cultivation of tobacco in.................... 151
seed-beds in 114	field scaffolds for tobacco in 169
soil, preparation of, for tobacco iu........... 113	geological and physical foatures of - 148, 149
suitable for tobacco in................ 112, 121	inspection of tobacco in 161
timbor growth of tobacco lands in.......... 113	labor and wages of tobacco hands in 158,159
tobacco crop of, by counties (table) 10^{4}	marketing tho tobacco crop in 157
fertilizers $113,114^{44}$	new method of hanging tobacco on laths in.- 153
transplanting tobacco in 114	preparation of tobacco ground in.............. 150
treatment of tobacco in, after curing 118	producion, etc., of tobacco in, 1876 to 1879 , in-
value of different grades of tobacco in, 1879.119, 120	clusive (table) 167
- tobacco lands in 120	rank of, in ncreage, production, etc. (table)...
varieties of tobacco grown in111, 112	seed-beds in. ... 160
Norway, tobacco suitable for export to......................... 22	seed-leaf tobacco of 16
O.	soils of................................-.......... 149
Ohio, amount of tobacco grown in 140	stripping and bulking tobacco in 154, 155
Burley tobaceo district of...................... 126-132	toldacco crop of, by counties (tablo) 11
production of, census years 1840 to 1880, inclu-	topping and suckering tobacco in............ 151,152
sive (table)....................................... 126	varioties of tobacco cultivated in 150
olimate of (table) .. 126	warehouses for tobacco in 158
comparison of recent toluacco crops of.................. 128, 135	wide and close planting in.................... 163
cost of growing and marketing seed-leaf tolvacco of ... 133	worming tobacco in 151
production of tobacco in131, 132, 145, 146	yield of tobacco per acre in, 1879.
culture and curing of tobacco in....................... 125-147	Perique tobacco, cost of producing and marketing of......... 85
diseases and insect euemies of the tobacco plant in...146, 147	cultivation of.................................. 83
geology of. 126,141	cutting and curing of......................... 84
history of tobaoco culture in the Miami valley of (table).132, 133	decrease of product and causes of 82
in the Spangled tobacco dis-	iseases of 85,86
trict of (table) 141, 142	grades of product of 8^{2}
houses for tobacco in........ 144	injury of, from storms. .-..................... 86
preparation of soil and planting tobacco orop in..130, 137, 143	insects destructive to...................... 86
preferred tobacco soils of................................ 136,137	peculiarities and special uses of............ 82, 86
prices of different grades of seed-leaf of................. 140	points of excellence of 6
other varieties of tobacco of142, 145	preparation of soil for........................ . 83
production, etc, of tobacco in, 1876 to 1879, inclusive	priming and topping of....................... 84
(table) .. 147	seed-beds 83
rank of, in acreage, production, etc. (table).............. 2	soils and modes of cultivation................ 83

Ohio, seed-beds in 130
seed-beds 83allin tovac:108, 109soils suited for tobacco in04, 105
wating and surinkage of tobacco in 10
topping and suckering tobacco in 106varieties of tobncco grown in104
tobacco 270
Nitric acid, proportion of, in tobaceo.125
assorting tobacco in 11
barns for tobacco in120, 121
culture and curing of tolacco in 115-12
diserses of tobacco in116-118
geology and soils of (table)119
hailstorms in, injury to tobacco crop by119
marketing tobacco crop in19
priming, suckering, and topping tobacco in.
inclusive (table) 121
rank of, in acreage, production, etc. (table). 2rotation of crops in114
sead-beds intimber growth of tobacco lands in113
114transplanting tobacoo in
treatment of tobacco in, after curing 118
tobacco lands in
120
120
varieties of tobacco grown in 112
Norway, tobacco suitable for export to140Burley tobaceo district of126
olimate of (table) 120
on orent tabacco erops of 135
production of tobacco in131, 132, 145, 146 125-147

goology of 126, 141
history of tobacco culture in the Miami valley of (table). 132, 133in the Spangled tobaceo dis-trict of (table)141, 142
houses for tobacco in143
preferred tobacco soils of.140
other varieties of tobacco of147
(table)

 T.

Temessee, assorting, stripping, and preparing tobacco for mawnet in 185, 186
Clarksville district of 174-176
nerange, production, yield, and value of to-bneco crop in, 1876 to 1879 , inolusive(table).176
varieties of tobacco grown in 175
olimate of 172
cost of raising tobaceo in 189-191
Cuba tobaceo, experiments with 192
culture and curing of tobace in 167-192
outting and housing the tobace crop in 183, 184
houses for tobreco in 181-183
marketing the tobacco erop in 188, 189
prices of tobacco in (table) 191
prizes for tolaceo and their construction in. 187, 188
production, ete., of tobacco in, 1876 to 1879 , inclu- sive (table) 192
rank of, in acroage, prochetion, ete, (talle) 2
soils proferred for tobaco in 173
tobacco crop of, by counties (table) 12
topograply, geology, and soils of 168-172
topping, worming, and suckering tobneco in 180, 181
Upper Cumborland River district of 177, 178
proparation of soil and planting tobacoo in 178
procluction, otc., of tobacco in, 1876 to 1879, inclusive (table) 178
varieties of tobace cultivated in. 177
West 'Temuessee district 173,174
soils preferred in 173
varietios of tobaceo planted in 173
Texas, tobacco crop of, by counties (talle) 12
Timber growth of tobacco lands in North Carolina 113
Wisconsin 230
Tioga county, Pennsylvania 166
Tobacco, absorptive capacities of certain varioties of 271
acreage of, by states and countios (table) 3-14
African shippers 22
analyses of princ 267-269
Austrian Regie 21
barns 89, 116, 155-157
Belgian 22
bulking of 154
chemistry of American, report on 264-280
chewing 18
Clarksville district 18
classification of 15-23.
cigar and smoking 16
combustibility of, eauses upon which it deponds..275-278comparison of crops73
composition of 273
changes in 273-275
percentage (table) 269
pariations in 271-273.
constituents of leaf. 264,265
continental shippers 20
cost of production of, in cortain states (table). 2
crop of the United States, by conntion (table).. 3-14
description, varietios, and uses of (table). 23,24
diseaser of, general remarks on 261, 262
fall sowing of 162
fine-cut 18
hanging of, on laths 153, 154
houses. 27, 35, 36, 144, 181-183, 206, 235
Kite-Foot18
Page.
Tobaceo, packing 157, 158
seaffolds for 152
sheds 106, 107
stripping $154,155,185,186$
strips $41,47,211,262,263$
types of15-23
Topography of Lower Green River district of Kentucky 51
Ohio River district of Kontucky 48
Tennessee 168,169
Transplanting tobaceo in New York 105
Typo mates 23
Types of tobaceo in Lowor Green River district of Kentucky- 51
Missouri Ohio River district of Kentucky
Paducah district of Kentucky 46 46
U.
Upper Cumberland River district of Temessee 177, 178
Upper Green River district of Kentucky 55,58
cost of tobacco production in. 58
geology and soil formations of 56,57
labor and the labor systom of 57
production, etc., of tobacco in, 1876 to 1870 , inclusive (table) 58
types of tobacco produced in 55
valnes of tobacco crop of, in 1879 58
varietios of tobaceo grown in 56
Uses of spanglod tobaceo 1.45
tobacco (table) 23,24
\mathbf{v}.
Value of tobacco in farmers' hands (table) 2per acre (table)
por 100 pounds (table)2Farieties of tobaceo (table)23, 24
Vermont, toloacco crop of, by counties (table) 13
Virginia, account of tobacco in (tables) 212-225
air- and fire-cured tobacco in, proportions of (table). 207
Blue Ridge division of. 199
climate of (tables) 195
cost of raising and marketing tobacoo in 211, 212
cross-fertilization of tobacco land in 199
culture and curing of tobacco in 192-225
cutting, hanging, and housing tobacco in 205, 206
diseases of tobacco and insect enemies in 211
exports of tobacce from 1619 to 1775 (table) 924
fertilizers for tobacco in, how applied, quantity and cost per acre 201, 202
flues for curing tobacco in. 193,194
history of types of tobacco in 192,193
houses for tobacco in 206
insurance, rates of, on tobacco in 207, 208
loose tobneco, how sold in 210
losses of toloacco by fire in 207
management of tobacco before stripping in 208
middle division of. 198
Piedmont division of 198,199
plug-wrappers in 19
pole-sweat in 208
prepasation of land for tobacco in 202,203
tobacco for market in. 209, 210
prized tobacco, how sold in 210
prizing tobacco, best season for 209
proportional acreage in tobacco in 200,201
quality of tobacco in 194,200
rank of, in acreage, production, etc. (table)
203, 204
seed-beds in
soils of 196Page.
Virginia, soils of, condition of, for tobaceo 197
deterioration of 202
influence of, on quality of tobaceo product. 190,900
storms, effects of, on tobaceo crop 145
surfaco rocks of tobacco region 96,107
tobacco crop of, by countios (table) 13
topping, priming, and suckering tobacco in 2014
valley and Appalachia divisiou of 109
varieties of tobaceo grown in 198
Wages of tobaceo hands in Ohio. 146
Pennsylvania $15!$
Washington territory, tobacco crop of, by counties (table) 13
West Indies, tobacco for export to. 22
Westmoreland county, Pennsylyania 166
West Tennesseo tobacco aistrict $.173,174$
West Virginia, climate of 220
cost of raising tobaeco in 229
culture and ending of tobneco in 245-220
cutting and housing of tobaceo iil 228
disenses of tobacco in 929
fertilizers for tobaces and proservation of soils in 227, 228
geology and soils 226
insect enomies of tobacco in 229
preparation of tobacco land and enltivation 220
quality of tobacco grown in 220
rank of, in acreage, production, ete. (table). 2
seecl-beds in Q28
spangled tobacco of 21
tobaceo, crop of, by countios (table) 14
topping aud priming tobaceo in 208
varieties of tobacco grown in 247
White Burley district of Kentucky $3-80$
analyses of soils of $73,7.1$
best soils of. 76
cost of production in 70
geological formations and soils of 3
grades of tobaceo product in (table) 76
physical featimes of 73
production, etc., of tobacco in, 1876 to 1879 , inolusive. 80
Wisconsin, acroage, yield, and value of tobace crop of 237
olimate of (table) 230
culture and curing of tobacoo in $.230-937$
cutting and housing of tobacco in 234,235
fortilizers for tolacco in $23: 3$
grades of the tobacco product in 232, 233
history of tobaceo culture in
insect enemies of the tobacco plamt in $23: 1$
lands, labor, and cost of production of tohneco in. 233
peculiarities of tobacco in 236
proparation of soil for tobacco in 934
prices of tobacco in (tablos) 235, 236
rank of, in acreage, production, eto. (tablo) 2
seed-beds in 233
leaf of 17
soils for tolaceo in 238
timber growth of. 230
tobacco crop of, by counties (table) 11
houses in 235
topping and suckering tobaceo in 234
Wrappers, plug 19,20
Swiss 92
Worming tobacco.. $180,181,246$Y.
Yellowing tobacco 117
York cou 166, 107

[^0]: I have observed that the alkaline salts of malic, citnic, oxalic, peatic, and tartaric acids, when heated in elose vessels, swoll up strongly, without doubt because they melt in decomposing, and leave a very voluminous coal that possesses little solidity rud is very porons; while the lime salts under the same circumstances do not alter in volume, and leave a very compact and coherent coal. Now,

