DEPARTMENT OF THE INTERIOR, CENSUS OFFICE.

ROBERT' P. PORTER,

Suporintentent.
Appointed April 20, 1889; resigned July 31, 1803.

CÁRROLL D. WRIGHT,
Commissioner of Labor in charge Appointed Outober 5, 1893.

REPORT
 AGRICULTURE BY IRRIGATION

IN IHE

WESTERN PART OF THE UNITED STATES

AT THE

ELEVENTTE OENSUS: 1890.
F. H. NEWELI, special agent.

WASHINGTON, D. O.: GOVERNMENT PRINTING OFFIGE.

CONTENTS

Letter of transmittal of the Commissioner of Labor in oharge to the Secretary of the Interior
Page
vii
Westhrn part of the United States:
Number of farms and area irrigated 1,2
Percentage of land surface irrigated 2, 3
Percentage of number of farms irrigated 3
Porcentage of farm area irrigated 3, 4
Character of crops and proportion irrigated 4,5
Value of land and crops 5, 6
Size of farms 6-8
Cost of irrigation 8,9
Total investment and enhanced value 9-11
Cost of inigating cinals 11
Water supply 11, 12
Duty and value of water 12, 13
Rainfull 13,14
Artesian wells 14-19
Reservoirs 19
Methods of conduoting water 19, 20
Methods of applying water 20, 21
States and territorims: Arizona 22-32
California 33-89
Colorado $90-135$
Itaho 136-156
Montina 157-176
Nevada 177-192
New Mexico 193-201
Oregon. 202-217
Utah 218-235
Washington 236-247
Wyoming 248-256
Subieumid states:
General remarlss 257-260
North Dakota 260-262
Soutli Dakota 263-266
Nebraska 266-273
Kansas 273-277
Texas 278-283

LIST OF ILLUSTRATIONS.

1

View of cement lined canal near Santa Anita, Los Angeles county, California, illustrating improved mothod of couducting water.
rage. 19
Vien of orange orchard, showing method of applying water by besins on terraces 20
View of Korn river and canal on south side above Bakersfield, Kern county, California 51
View of cement distribnting ditch, North Pomona, Los Angeles county, California, illustrating method of distributing water to orchards 57
View of distributing ditoh, Los Angeles county, California, illustrating method of conserving water by cement lined titches .- View of 50 -inch redrood pipe crossing Warm Springe creek near Redlands, San Bernardino county, California, on the main high line of the Bear Valley canal 72
Viow of artesian well and mensuring device, Gage system, San Bernardino comnty, California 73
View at upper end of tunnel about one-half mile below heal of North Poudre canal, Larimer county, Colorado 118
Scene on Rio Granile canal near Del Norte, Colorado, showing bifurcation gates, about 2 miles below main head gate 128
Sceue on sonth branch of Payette river at point of diversion of the canal of Payette Valley Irrigation and Water Power Company, about 2 miles above Emmett, Ada county, Idaho 141
View of Brunean dam and canal, Owyhee county, Idaho. 155
Vier of valley and ljench lands along West Gallatin river, Gallatin county, Moutana 166
View in canyou of Bear river, Boxelder county, Utah, looking east, slowing waste ways of Bear River canal on the left 223
View of Belmont canal near head, Cheyenne county, Nelraska 261
Western part of the United States, showing location of areas irrigated in 1889 2
Irrigation canals in the Gila valley, Arizona 28
Relative location of irligation districts of Califoruin 39
Irrigating enuals in the vicinity of Fresno, Fresno countr, California 48
Irrigating canals in the vicinity of Bakersfield, Kern county, California 54
Irrigating canals in the vicinity of Tulare, Tulare county, Californin 85
Colorado, showing irrigated areas in 1889 91
Principal invigating canals of Conejos and Rio Grande comnties, Colorado. 105
Irrigating cruals in the vicinity of Greeley, Weld county, Colorado 134
Idaho, showing irrigated areas in 1889 137
Irrigating eanals in the vicinity of Idaho Falls, Bingham comnty, Idaho 147
Montana, showing irrigated areas in 1889 157
New Mexico, showing itrigated areas in 1889 193
Utalh, showing irrigated areas in 1889 218
Wyoming, showing irrigated areas in 1889 248
Irrigating canals along Arkausas river in western part of Kansas 275

DIAGRAMS.

Classification of itrigated farms according to size 7
Annual rainfall at important stations in the western part of the United States 13
Average monthly precipitation at important, stations in the western part of the United States. 14
Daily discharge of Salt river at Arizona dam, Maricopa"county, Arizona. 27
Daily discharge of Arkansas river at Canjon, Fromont county, Colorado 111
Daily discharge of Rio Grande above Del Norte, Rio Grande county, Colorado 128
Daily discharge of West Gallatin river below Spanish creek, Gallatin connts, Moutana 1.67
Daily discharge of Yellowstone river at Horr, Park county, Montana 174
Daily discharge of Truckee river at Vista, Washoe county, Nevada 190
Daily discharge of Owghee river at Rigsbys, Malheur county, Oregon. 214
Daily discliarge of Bear river at Collinstou, Boxelder county, Utah 223

LETTER OF TRANSMITTAL.

DEPARTMENT OF THE INTERIOR, Census Office,
Washingron, D. C., May 31, 1894.

SIR:
I have the honor to transmit lerewith the Report on Agriculture by Irrigation in the western part of the United States, prepared by Mr. Frederick Haynes Newell, special agent, under the general direction of Mr. John Hyde, formerly special agent in charge of the division of agriculture.

Very respectfully,
CARROLL D. WRTGHT, Commissioner of Labor in chcrge.
Hon. Hoke Smith,

INTRODUCTION.

by f. h. Newell.

This report shows the relative importance of irrigation under the general heads of the Arid region, where irrigation is essential, and the Subhumid region, "where the rainfall in some seasons tempts the agriculturist to depend upon a supply that fails to develop his crops in other seasons.

In the first, or arid region, are embraced part or the whole of certain states and territories, namely: Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utall, Washington, and Wyoming.

In the subhumid region are embraced parts of certain states, namely: North Dakota, South Dakota, Nebraska, Kansas, and Texas.

The following condensed tables present the number of persons who irrigate their farms, aggregating 52,584; the acres irrigated, aggregating $3,564,416$; the average size of irrigated farms for the regions treated, 68 acresy the average value of products per acre for the arid region, $\$ 14.89$, first distributed by states and territories for the arid region, and next by states for the subhumid region.

TOTAL NUMBER, TOTAL AREA, AVERAGE SIZE, AND AVERAGE VALUE OF PRODUC' PER ACRE OF IRRIGATED FARMS IN THE ARID REGION.

States and termetories.	Number of inrigators in 1889.	Area irnigated in 1889, in acres.	A verago size of irrigated farms, in acres, in 1880.	Average value of products per acre in 1889.
Total.	52,584	3,564, 416	68	\$14.80
Arizona	1,075	65, 821	61	13.92
California	13,732	1, 004, 233	73	19.00
Colorado.	9,650	890, 735	92	13.12
Idaho...	4,223	217, 005	50	12.03
Montana	3,700	350, 582	95	12.96
Nevada.	1,167	224, 403	192	12.02
New Mexico	3,085	91, 745	30	22.80
Oregon	3,150	177, 914	56	13.00
Utah	9,724	263, 473	27	18.03
Washington	1,046	48,709	47	17.00
Wyoming	1,917	229,676	119	8.25

The table for the subhumid region does not show the value of products per acre.
TOTAL NUMBER, TOTAL AREA, AND AYERAGE SIZE OF IRRIGATED FARMS IN THE SUBHUMID REGION.

States,	Number of irrigators in 1889.	Aren irrigated in 1889, iu neres.	Avorage size ot irrigated farms, in acres, in 1889 ,
Total.	1,552	86, 965	43
North Dakota	7	445	64
South Dakota.	189	15,717	89
Nebraska.	214	11,744	55
Kansm	519	20,818	40
Toxam.	623	18,241	29

IRRIGATION.

The area irrigated by artesian wells was but 1.429 per cent of the irrigated land. The number of wells, the area they inrigated in each state and territory, with various details, appear in the following table:

ARIESIAN WELLS ON FARMS IN JUNE, 1890.

states and territories.	Tota: number.	Average lepth in leet.	Average cost per well.	Average discharge in gallous per minute.	wells usei in irrigation.		Acres imrigrated por well.	Totnl arreage irrigated.
					Porcent.	Computed number.		
Total..	8,097	210.41	\$245. 58	54.43	48.54	3,930	13.21	51,800
Californin.	3,210	248.00	425.00	104.00	64.17	2,060	18.63	38,378
Coloralo.	590	251,00	221.00	39.00	57.85	345	18.01	0,213
Idalio..	28	83.00	33, 00	11.00	50.00	14	13.21	185
Kansas.	59	202.00	175.00	44.00	41.37	24	13.71	399
Montana.	14	366.00	473.00	28.00	42.85	0	3.00	18
Nebraskia	91	347.00	173.00	13.00	7.40	7	1.00	7
Novada.	33	215.00	607.00	0.00	60.00	20	1.00	20
North Dakota.	401	196,00	265.00	21.00	2.17	10	2.00	20
Oregon.	0	70.00	250.00	15.00	50.00	3	4.00	12
South Dakota.	527	216.00	158.00	51.00	13.40	71	6. 68	-474
Texas.	53.	292.00	359. 60	19.00	27.32	14%	3.00	438
Utah.	2, 524	146,00	78.00	20.10	48.49	1,294	4.74	5,802
Washington	0	127.00	312.00	80.00				
Wyoming.	5	210.00	450.00	8. 00				

IRRIGATION IN THE WESTERN PART OF THE UNITED STATES.

NUMBER OF FARMS AND AREA IRRIGATED.

The area irrigated within the arid and subhumid regions in the western part of the United States during the census year ending May 31 , 1890, aggregated $3,631,381$ acres, or $5,674.03$ square miles, approximately four-teuths of 1 per cent of the total land area west of the one hundredth meridian. Of this irrigated area very nearly two-thirds was devoted to the raising of various kinds of forage. The total number of irrigators was 54,136 , or, more correctly, this was the aggregate number of farms or agricultural holdings upon which crops were raised by means of irrigation. In this comnection it may be well to note that the clefinition of a farm adopted for the purposes of the census includes "all considerable uurseries, orchards, and market gardens, owned by separate parties, which are cultivated for pecmiary profit and employ as much as the labor of one able-bodied workman during the year". "A farm is what is owned or leased by one man and cultivated under his care. A distant wood lot or sheep pasture, even if in another subdivision or district, is to be treated as a part of the farm, but wherever there is a resident overseer or a manager there a separate, farm is to be reported". Under this classification a person can have but one farm, umless the estate is so large as to require a resident farmer upon each tract.

The following table gives the items mentioned above for each state and territory lying within the arid region,' and also for the states largely within the subhumid region on the east, the statistics for these latter being grouped under the single designation " subhumid region":

NUMBER OF IRRIGATORS, AREA IRRIGATED, AVERAGE SIZE OF IRRIGATED FARMS, AND AVERAGE VALUE OF PRODUCTS PER ACRE IN EACF STATE AND TERRITORY IN 1889.

staths and territories.	Number of irrigators.	Aren irrigated in aores.	Avorage size of irrigated farms in acres.	Averago valuo of products per acre.
Total .	54, 130	3, 631, 381.	67	\$14. 89
Arizona.	1,075	05, 821	61	13, 02
California.	13,732	1, 004, 233	73	19.00
Colorado.	9, 659	800,735	92	13.12
Idaho.	4,323	217, 005	50	12.93
Montana.	3,700	350, 082	95	12.06
Nevada.	1,167	224, 403	192	12.92
New Mexico.	3, 085	01, 745	30	12. s 0
Oragon.	31750	177, 044	50	13.90
Utah.	0, 72.4	263, 473	27	18.03
Washington	1, 046	48,799	47	17. 09
Wyoming. -	1,917	220, 070	120	8.25
Sulhamid region	1,552	60,905 ,	43	

The average size of such portions of farms as were actually irrigated was 67 acres. This is the result obtained by dividing the total area irrigated by the total number of holdings. This acreage was large, from the fact that in many of the states of the far west large areas of hay lands were flooded, little care or attention being bestowed. upon them. This was notably the case in Nevada and Wyoming, and to a less extent in Montana and Colorado.

The average value of products per acre from this irrigated land was $\$ 14.89$, this being the quotient obtained by dividing the total value of all products "sold, consumed, or on hand in 1889 " by the number of aeres irrigated. There was a tendency apparent from many of the returns received from farmers to underestimate the value of products and to overestimate the acres irrigated. As a result the value of products per acre obtained in this way was far less than has been popularly supposed was obtained from irrigated lands.

The term "subhumid" is generally understood as applying to a portion of the Great Plains lying to the east of the arid region, and is so used in this report upon irrigation. As a matter of course there is on the western side of the axid region a strip of country which may be designated as subhumid, but this area, on account of the diversified topography, is comparatively narrow and restricted, siuce the arid region extends on the southwest to the shores of the Pacitio ocean and on the northwest to the Cascade range. For purposes of discussion the sabhumid region is therefore considered as extending in a broad belt lying across the country in a north and
south position and including portions of the states of North Dakota, South Dakota, Nebraska, Kansas, Oklahoma, and Texas. The western extremity of Texas lies far within the arid region, but since the greater part of Texas is subhumid, the irrigation statistics for the whole state have been placed in this category.

The following table gives for these subhumid states the principal facts relating to irrigation, mamely, the number of irrigators or holdings, the acreage irrigated, and the average number of acres in each holding. The average value of products has not been ascertained, since in these states, where some crops were raised by irrigation and others without the artificial application of water, it has been impossible to discriminate between the products raised by these two methods of agriculture. The table shows in a general way an increase in the number of irtigators and in acreage irrigated from north toward the south, which is clue largely to the fact that conditions of summer aridity increase with lower latitudes, and also to the greater density of population and more easily available water supply toward the south.

NUMBER OF IRRIGATORS, AREA IRRIGATED, AND AVERAGE SIZE OF IRRIGATED FARMS IN THE SUBHUMID STATES IN 1889.

The relative position of these irrigated areas in both arid and subhumid regions is shown on the accompanying plate, the small green patches, mainly along the streams, indicating the principal places where crops were raised. by the artificial application of water. In size these patches of color are not comparable among themselves, as on the scale of the map it is impossible to represent them in their true proportion, and where a number of sman holdings or groups of holdings are near together they have been run into one spot whose size is relatively too large.

PTRCENUAGE OF LAND-SURFACE IRRIGATED.

The relative number of agricultural holdings ou which irrigation was practiced and the proportion of these as regards area are shown in the appended table. Omitting the subhumid states, in which irrigation may be consideren as exceptional, the total area irrigated was $3,564,416$ acres, or $5,569.40$ square miles. This is almost exactly one-half of 1 per cent of the total land area of the states and territories within which irrigation was commonly practiced. In this comparison the area of 13 eastern connties of Washington and 16 eastern counties of Oregon has been taken instead of the total for the two states. The largest percentage by states was found in Colorado, reaching 1.34 per cent, and the smallest percentage irrigated among arid states and territories was in Arizona, where the area was less than one-tenth of 1 per ceut.

AREA IRRIGATED IN STATES AND TERKITORIES WHOLLY OR PARTIALLY WITHIN THE ARID REGION.

a Sixtem eastern counties only.
b 'Thirteen eastern counties only.

	Prntmer.		peat chat.
Ronulare eomaty, (20ho	11.01	Sult Latin cumuty, litalu.	5. 110
	7.43	T'ulateroblut, , f:al	4.71
U:Nis cotuty, litah	13.9\%		4.56;
Ormape eotmoty Cat	1.73	Cathe eombls, l'tal	1.13:
Welore eontury, Ituls	3. 13	Woldi countr, ('ula	4.30

 minfall.

 mhtained ato:

" Silatern		

Gomsidering this table as a whole, it may he said that in the states and torritomios in the mper pate of the list invightion was the ma, while in those toward the foot it had loss importanes, and in the ease of Washingtom it

 instrad of tenth, with a peremtage of as. 6 of of tho finms inviguted.

 20.72 per cent of the total aron of these foms. In other words, in these 11 states ant terifories less than half

 than hati of the fans, applies to the whole, 123,143 foms, the total acreage of those agrienlume holdings wond be $40,278,84+$ neres.
 evidently only 8.8 o per centi of the land owned by damers within the states and termondes elesignated. This is a sighlleant thet, especially in companison with the water supply, for it has been found mpon a detailed examination of ouch eomby and locality that as a rule the groater part if not all of the easily available water supply has been.
utilized, and in 1888 and 1889 the losses through drought were enormous, yet less than one-tenth of the land belonging to the farmers actually produced a crop by means of irrigation. It must be borne in mind, however, that a portion of the remaining nine-tenths, especially in the state of California, does not require irrigation, and that a still greater portion is unquestionably above the reach of water; but from a careful consideration of these figures it would seem as though all of the water supply of the arid region must be needed to properly irrigate the lands already owned by farmers and not fully ntilized, provided that these lands are so situated as to be susceptible of irrigation.

Comparing the states and territories among themselves as regards the completeness of irrigation of the area of the farms which were wholly or in part cultivated in this manner, it is seen that Arizona stood at the head, with a percentage of 43.21 , while Nevada came last, with only 14.13 per cent of the area of each farm irrigated. Arranging these in the order of this relation, the following result is obtained:

STATES AND TERRITORIES IN THE ORDER OF THE PROPORTION OF LAND IRRIGATED TO THE TOTAL AREA OF LAND IN FARMS WHOLLY OR PARTLY IRRIGATED.

	per cent.		per crat.
1. Arizona	43.21	7. California	17.86
2. Colorado	31.09	8. Washington	17.00
3. Ydaho	26.08	9. Oregon.	15.89
4. Montama.	23.05	10. Wyoming.	15.24
5. Utah	22.03	11. Nevada.	14. 13
6. New Mexico	17.98		

In Wyoming and Nevada the agricultural holdings were generally very large, being used chiefly for stock raising, and, therefore, as might be expected, the irrigated portions from which crops were cut were but a small percentage of the whole area. Thus, althongh irrigation was essential, these divisions came near the bottom of the list.

In the case of the subhumid states any comparison of the area of crop irrigated with the total area of the state would have little value, as irrigation is exceptional and is practiced in widely scattered localities. The following table shows the relation between the irrigated area and the total size of the agricultural holdings on which this method of agriculture was practiced. Taking the 5 subhumid states as a whole, only 6.40 per cent of the farms owned by men who practiced irrigation was actually cultivated in this mamner. In comparing the percentages for the states, it is to be seen that these diminish in order from north to south, ranging from 34.77 in North Dakota, the highest, to 2.43 in Texas, the lowest. The small percentage in the latter state was due partly to the fact that irrigation was largely carried on by means of water from springs or wells, small areas of garden, fruit and slade trees, and forage crops being watered on each farm, even where field crops were raised by dependence upon rainfall.

TOTAL AREA OF FARMS IN SUBHUMLD STATES ON WHICH IRRIGATION WAS PRACTICED, TOGETHER WITH AREA AND PERCENTAGE IRRIGATED IN 1889.

charagier of orops and proportion merigated.
The character of the crops raised by irrigation is shown in a broad way by the table on the following page, in which a classification has been made into two great groups, comprising the cereals on the one hand and the forage and miscellaneous crops on the other, forage forming by far the greater part of this latter group. This table serves to show that over one-third of the area irrigated was devoted to cereals, namely, wheat, oats, Indian corn, barley, rye, and buckwheat, the importance of these products being in the order named. Of the remainder of the crop over 60 per cent consisted of forage, including various native and cultivated grasses, alfalfa or lucern, and other clovers, also wheat, oats, and related cereals cut before maturity for forage purposes. The widespread practice of using the cereals for hay, especially when owing to scarcity of water a fair crop of grain could not be produced, has introduced considerable confision in the returns, and in some instances caused the products per acre and their values to appear remarkably small. The irrigated areas devoted to fruits are included with miscellaneous crops, since, althongh of great value, they form but a relatively small percentage.

GENERAL CHARACTER OF CROPS IN THE ARID REGION IRRIGATED IN 1889, BY STATES AND TERRITORIES.

states and territories.	Total acreage irrigated.	formag and miscetlaNeous crops.		centals.	
		Per cent.	Acres.	Per cent.	Acres.
Total	3, 564,410	65.31	2,328,016	84.69	1, 236,400
Arizona.	65, 821	65.82	43, 321	31.18	22,500
California.	1, 004, 233	47. 22	474, 233	52.78	530,000
Colorado.	800,735	70.25	625,735	29.75	205, 000
Idaho.	217, 005	70.97	154, 005	29.03	63,000
Montana.	350, 582	78.61	275,582	21.39	75,000
Novada.	224, 403	93. 32	200, 403	6. 0 ¢ 8	15,000
New Mexieo	91, 745	36. 78	33,745	63.22	58, 000
Oregon	177, 044	69.99	124, 544	30.01	53,400
Utah.	263, 473	56.35	148, 473	43.65	115, 000
Washington	48,790	57.00	28, 290	42.01	20,500
Wyoming.	220,076	91.73	210, 670	8.27	19,000

Throughoit the arid region as a whole over 80 per cent of the crop area, including as a matter of couse the forage plants, was irrigated, but at the same time there were counties lying well within this great region where as high as from 20 to 40 per cent of the area cultivated was utilized without the artificial application of water. Examples of this were found in northern Utah, where, as in the, Cache and Malade valleys, large areas were profitably cultivated by what is known as "dry farming". The large size of the counties and the restricted areas. in which agriculture has been conducted render figures somewhat misleading in detail, as, for example, in the southeastern corner of California, in San Diego, San Bernardino, and adjoining counties, in which the statistics obtained apply only to the regions near the coast, where from 20 to 60 per cent of the crop areas were irrigated. The greater portion of these counties, that lying east of the mountains near the coast, can produce nothing: without water artificially applied. On both sides of the main body of arid lands, as might be inferred, there were counties in which the greater part of the crop area was not uuder irrigation, and beyond or adjacent to these the areas in which this method of agriculture was not in use. Along the border and even well within the arid region there were localities where it was impossible to draw the line sharply between areas irrigated and those not watered, especially where on one farm part of a given crop was irrigated and the other part not. Many farmers have learned that thorough cultivation will often compensate for scantiness of precipitation, and when, as was the case in 1880, droughts were general and water was difficult to obtain, portions of the fields were dry farmed.

VALUE OF LAND AND OROPS.
The average value of the laud upon which crops were raised by irrigation, and the average value of the products per acre are shown in the table on the following page, these averages being obtained by dividing total values by the number of acres for which values were given; that is to say, in cases where the returns of farm values of products were deficient, the acreage was omitted in order to obtain the averages, it being assumed that these ferr cases did not differ materially from the mean of all others. For the 11 states and territories given the average value of the ixrigated land, including improvements, such as fences and buildings, was $\$ 83.28$ per acre, ranging from $\$ 31.40$ per acre in Wyoming up to $\$ 150$ per acre in California. The total value of this irrigated land and its improvements thus obtained was $\$ 296,850,000$.

The average value of products for the 11 states, $\$ 14.89$ per acre (to nearest figure), multiplied into the number of acres, gives in round numbers a total of $\$ 53,057,000$. This average value has been obtained, as above stated, by taking all the cases in which definite returns were made and assuming that they depresent the general condition. In the case of the states and territories where crops are raised on the same farm both with and without irrigation it is exceedingly difficult and not unfrequently impossible to discriminate between them.

Value of irrigated lands in arid region in 1890 and of their products in 1889.

states and ternitortes.	Aroa irrigated in 1889 in aeres.	Yalue of farms on JUNE 1,1890.		VALUE OF PRODUCT: IN 1889.	
		A verage value per aere.	Totai value, estimated.	Average value per acre.	Total value, estimated.
Total	3,564, 416	\$83.28	\$296, 850, 000	\$14.89	\$883, 057, 100
Arizona.	65,821	48. 08	3, 20:, 000	- 13.92	916, 000
California	1,004, 233	150.00	150, 685, 000	19.00	19,080, 000
Colorado.	800, 735	67.02	59, 0.96, 000	13.12	11, 686, 000
Idalio.	217, 005	46. 50	10, 691,000	12.93	2, 806, 000
Montana	350, 582	40.50	17, 354, 000	12.96	4,544,000
Nevada	224, 403	41.00	9, 200, 000	12. 92	a2, 899, 000
New Mexico	01,745	50.08	4, 077, 000	12.80	1,174,000
Oregon	177, 944	57.00	10, 143, 000	13.90	2, 473,000
Utah	263, 473	84.25	22, 198, 000	18.03	4,750,000
Washington	48,790	50.00	$2,440,000$	17.09	834, 000
Wryoming	229, 676	31.40	7,212,000	8.25	1,895, 000

a The actual value of farm products for the state of Nevala as returned on tho agrientural schedules was $\$ 2,705,600$. The exceas of the estimate in the abore table is probably accounted for hy the omission of valuations from many irrigated farms in which the only crop was alfalfa and other forage eaten by cattlo, and which were noti reported to the enamerators.

SIZE OF FARMS.

In a comparison of the relative size of irrigated holdings in various localities the fact brought out most prominently by a study of the census returns is the large size of the areas devoted mainly to the raising of forage crops, as, for example, in Nevada, Montana, and Wyoming. On the other hand, in those localities where irrigation was highly advanced, and the products were of more than usual value, the irrigated holdings were small. The condition of the water supply, and the density of settlement entered often to modify this generalization, the irrigated areas being large where water was abundant and the population was scattered.

In order to examine into the average size of the majority of irrigated areas, and to eliminate the results produced by the existence of large tracts of land owned by a few men, the table showing "relative number and size of irrigated farms" has been prepared, in which the irrigated holdings have been classified according to size. The larger areas have been placed by themselves, thus allowing the far greater number of moderate sized holdings to be considered independently. For this classification 160 acres, or a quarter section, has been taken as. the basis, and for simplicity, all irrigated holdings or parts of holdings under 160 acres in area have been called throughout this report "small farms", and those of 160 acres or over have been designated as "large farms", it being understood that these terms apply only to the areas irrigated and not to the total holding of each individual, so that if a farmer owned 640 acres and inrigated 40 acres, the latter number was the one considered and it was classed as a small farm.

Out of the 54,130 holdings upon which crops were raised by irrigation in the census year there were 4,595 in which the area irrigated was 160 acres or upward, the total of the same being $1,802,605$ acres, or 49.64 per cent of the whole amomit irrigated; that is to say, 4,095 persons, or 8.49 per cent of those irrigating, owned very nearly one-half of the total area irrigated. The great majority of irrigators, 91.51 per cent, irrigated 1,828,776 acres, or an average of nearly 37 acres each, against an average of 392 acres upon which crops were raised by irrigation by the few large owners.

RELATIVE NUMBER AND SIZE OF IRRIGATED FARMS.

states and territories.	Under 160 acres.				100 agres and upward.			
	Number.	Total irrigated area in acres.	Average sizo in acres.	Per cont of total urea.	Number.	Total irrigated area in acres.	Arerage size in acres.	Percent of total aroa.
Total.	49,541	1,828,770	37	60. 36	4,595	1, 802,605	382	49.64
Arizona.	990	43, 165	43	65.58	79.	22, 056	287	34.42
California	12,595	382, 858	30	38.19	1,137	621, 383	547	61.88
Colorado.	8,227	451, 215	55	50.66	1, 432	439,520	307	49.34
Idaho..	4,110	159,528	39	73.51	213	57,477	270	26.49
Montana	3,130	174, 000	56	49.63	570	176, 573	307	50.37
Nerada.	823	47,812	68	21.31	344	176,501	513.	78.69
Newt Mexico.	3, 022	72, 069	24	78.55	63	19,676	312	21.45
Oregon.	2, 896	101,788	35	57.20	254	76, 156	300	42.80
Utah.	9,641	237, 616	25	90.19	83	25, 857	312	9.81
Washington.	904	31, 343	32	65.45	52	16, 856	324	34.54
Wroming.	1, 01.4	79, 963	50	34.82	303	149, 714	494	65.18
Subhumid rogion.	1,493	46,819	31	69.92	59	20,140	341	30.08 .

GENERAL DISCUSSION.

All the cases in which 160 acres or upward of crop (large farms) were irrigated, have been tabulated (see t following) under three headings, namely, those of from 160 to 320 acres, those of from 320 to 640 acres, and t of 640 acres and upward, these figures, as before stated, applying not to the total acreage of the agricult holding, but only to that portion upon which crops were raised by the artificial application of water.

Taking the irrigated areas of 640 acres and upward, the following table shows that they numbered 411, wit aggregate area of 724,147 acres, or an average of 1,762 acres each. The 411 individuals or corporations ow these irrigated lands constituted three-fourths of 1 per cent (0.76) of the umber of irrigators and held 19.9 cent of the total area.

RELATIVE NUMBER AND SIZE OF LARGE IRRIGATED FARMS (160 ACRES AND UPWARD).

Stateg and territuries.	100 TO 320 ACRES.			320 TO 610 ACRES			640 Aches And ovir.		
	Number.	Total irrigated area in acres.	Average sizo in actes.	Numbar.	Total irri. gated aro in acres.	Average sizo in ateres.	Number.	Total irrigated aroa in acres.	Average size in acres.
Total	3,242	071, 151	207	942	407, 307.	432	411	724, 147	1,702
Arizona.	57	10,454	183	15	G,515	434	7	5,687	812
Galifornia.	738	152,542	207	243	103, 488	420	150	305, 358	2,842
Colorado	1,113	224,518	202	244	103, 815	420	75	111,157	1,482
Idaho.	172	34,751.	202	84	14, 036	413	7	8,690	1,241
Montana.	421	88,904	211	123	51, 986	423	32	35,593	1,112
Nevada	201	46,556	232	91	41,494	450	52	88, 541	1,703
Now Mexico	46	10,202	222	14	6,460	401	3	3,014	1,005
Oregon.	192	38,786	202	40	21, 110	431	13	10,310	1,255
Utath.	65	13,234	204	13	5,555	427	5	7,068	1,414
Washington	36	7,599	211	11	4, 015	420	5	4,642	028
Wyoming.	161	35, 370	240	98	42,780	460	40	71,564	1,400
Subhumial rogion	40	8,195	205	12	5,423	452	7	0,528	083

The facts given in the two preceding tables are exhibited graphically in the following figure, which give percentage of total area of farms of each class to the area of all farms irrigated. The black portion of eack indicates the percentage which the total area of irrigated farms of under 160 acres each bears to all the irrigated. For example, in Utah, New Mexico, and Idaho the small irrigated farms predominated, their aggr being in excess of that of the larger farms. On the contrary, in Nevada, Wyoming, and California the irrigated farms, though being as a matter of course less in number, surpassed in aggregate area those unde
dIagram illustrating classlfication of irrigated farms according to size.

acres in size. The donbly crosshatched portion of each line or bar shows the percentage of area of farms of from 160 to 320 acres each, and the single crosshatching the percentage of those of from 320 to 640 acres each, while the open portion gives the proportion of those of 640 acres or upward. In Nevada, for example, the 52 large irrigated farms surpassed in area those of any other of the classes above enumerated, being considerably over a third of the total irrigated area.

COST OF IRRIGATION.

The statistics concerning acreages and value of land and products were taken from the enumerators' returns for each agricultural holding. Other facts now to be discnssed have been obtained by direct correspondence with farmers by means of special schedules addressed to each irrigator. These schedules contained questions intended. to cover facts concerning the Incation of irrigated land, the character of the water supply, the cost of irrigation, methods of using the water, necessity of irrigation, the use of artesian wells and pumps, also the location of canals or irrigating ditches, size and cost, and methods of distributing the water. In all about 30,000 replies have been received, and from these, after proper tabulation, certain averages have been drawn, the principal of which are shown in the following table:

AVERAGE COST OF IRRIGATION AND CULILVATION.

4				
States and territories.	A verage first cost of whter rights per acre.	A rerage value of wator rights per nere in 1890.	Avorage ammal cost of water per acre.	Average flrst oust per ncre of preparation for cultivation.
Total.	\$8.15	\$20.00	\$1.07	\$12. 12
Arizona	7.07	12.58	1.55	8. 60
California.	12, 05	39.28	1.60	17.48
Colorado.	7.15	28.46	0.79	9.72
Idaho.	4.74	13. 18	0.80	9, 31
Montana	4.63	15:04	0.95	8. 29
Nerada	7. 58	24. 60	0. 84	10.57
New Mexico	5.58	18.30	1. 54	11.71
Oregon.	4.64	15.48	0,94	12.59
Utnh	10. 55	26.84	0.01	14.85
Washington	4.03	13.15	0.75	10.27
Wyomiag.	3. 02	8. 69	0.44	8.23
Sulhamid regio	4.07	14.81	1.21	4.02

As shown above, the average first cost of bringing water to the land throughout the entire arid and subhumid regious has been $\$ 8.15$ per acre. This average was derived from the statements of all persons who have constructed ditches, or have purchased water rights from others. It included all cases from those, on the one hand, where the farmers dug or plowed small ditches leading from the river or creek to their land, to those, on the other, where the irrigator purchased the right to take water from some large canal, and embraced all the intermediate conditions where water was obtained throngh co-operation of neighboring landowners or through partnerships of farmers. The fact that a person has used water upon a certain number of acres entitles him in many localities, to certain rights or privileges. It has become customary to term property of this kind a "water . right", and the first cost of applying the water to the land can be considered as the cost of this "water right".

In the different states and territories there was a wide range in this average first cost of applying water to the land, or of the water right. The highest average was in California, where the most thorough and expensive systems for saving and distributing water have been constructed. The lowest was in Wyoming, where enormons areas have been covered witl water by means of ditches quickly and cheaply constructed by means of plow and scraper, the average cost in this latter state having been a little over one-fourth of that given for California.

The average value per acre of these water rights, wherever they could be considered independent of the value of the land, was $\$ 26$. This was the average of the valnes given to this privilege or property by the owners of water rights or of independent ditches. In many localities, however, owing to the scarcity of water or to other causes, the water right can not be taken from the land without depriving the latter of its entire value, for without a water supply the land is worthless. In such cases the entire value inheres in the water right, and if it is assumed that the average value of the land was $\$ 83.28$ per acre, at least $\$ 80$ of this, and possibly more, must be attributed to the water right. Taking those cases in which water rights were transferable and were sold or treated like other pieces of property, the apparent enhancement to the creator of these rights has been the difference between $\$ 26$ and $\$ 8.15$, or $\$ 17.85$ per acre.

Besides the first cost of water, uamely, the expense of constructing ditches from the stream or the cost of shares in some irrigating canal, the irrigator must pay annually a small amount or must expend some labor in order to repair the ditches and keep them in good order, the amount being often only a few cents per acre. Where he takes water from some larger canal, especially one owned by a corporation, he may be compelled to pay a larger sum, that will not only cover the cost of keeping the canal in repair, but will also pay interest on the investment, salaries of officers, and other items of expense. In the aggregate this often amounts to $\$ 3$ or even more per acre. Averaging all the statements as to the annual cost of water, the result for the entire arid and sublumid regions was $\$ 1.07$ per acre.

Since the greater part of the irrigators owned the small ditches used for bringing water from the streams to the land, having built, such ditches at points where the coulitions were most favorable for construction and maintenance, the annual cost of keeping them in repair has been small, much less than it would have been under other conditions. For example, with the construction of larger irrigating works designed to carry water to land farther away from the streams and to oyercome more or less serions obstacles, the first cost of irrigation was usually greater, as was also the annual cost, on account of the heavy interest upon the original investment, and also from the fact that salaries and other items of expense not entering into the operation of the small ditches were included.

The average cost of bringing the land under cultivation beyond the expense for water, but including fencing, was, according to the statements of the farmers, $\$ 12.12$ per acre, ranging from $\$ 4.62$ per acre in the case of the subhumid states to $\$ 17.48$ per acre in California, the difference being clue both to the configuration and character of the ground and to the amount of labor spent in preparing it for the various kinds of crops. For example, in most of the states where the cost of cultivation was low the ground originally was nearly barren, and there were no plants, except, perhaps, sagebrush, to be removed. In cases where the expense of preparing the ground for cultivation was great, either the ground was rough and uneven, requiring more or less leveling in order that the water might be applied economically, or it was covered with willows and other small trees, requiring considerable labor before the fields could be brought into arable conclition. Where fruit trees and vines were to be planted great expense has often been incurred, especially in Califormia.

TOTAL INVESTMENT AND ENHANCED VALUE.
By making use of the averages of cost and value as given in the preceding table and applying them, with proper modifications, to the acreage imigated, it is possible to arrive at certain conclusions as to the amount invested in irrigation works and in lands cultivated by irrigation, also as to the value of the same and the enhanced value realized by the owners of lands and water rights. The results obtained are shown in round numbers in the three following tables. In the cases of Nevada and Wyoming a mean value has been substituted for the average first cost of water for each state, from the fact that the average first cost of bringing water to the land in Nevada, owing to peculiar circumstances, applied to the land which was under a comparatively high state of cultivation, and not to the hay lands, while in Wyoming the reverse was the case.

In the table on the following page, under the head of "Cost", is given the total first cost of bringing water to the land irrigated during the census year, that is to say, this is in round umbers the sum of the amounts obtained by maltiplying the acreage irrigated by the average first cost of obtaining water, or of water rights, as given by the irrigators. It may also be considered as the investment in time and money in the construction of irrigating systems in use during the census year, under the broad assmmption that each system was employed to its full capacity. In such cases, however, as those in which a canal furmished water to only a small proportion of the irrigable lands, only a portion of the total cost of the canal would be represented in the totals shown.

The total first cost of irrigating the desiguated land was for the entire arid and subhumid regions $\$ 29,611,000$, this being the amount, as stated above, presumably invested in productive irrigation works. The total value of the rooks or of the rights thus created, assuming that the statements of the farmers apply to all cases, was $\$ 94,412,000$, showing an apparent increase of $\$ 64,801,000$, or 218.84 per cent. As to the total cost of the irrigation works or the expenditures for irrigation upon lands which for one reason or another were unproductive, it is impossible to obtain reliable estimates. Statements and conjectures have been made by interested parties, but they have no foundation so far as can be ascertained beyond the personal impressions of the individuals making the statements.

 land. As a matter of fact, in the vast magority of cases, it is punctically impossible to sepmate laml valus in tho arid region and assign to them a certan sum, for the value of tho land is insepmably homal with the question of water supply.

 bringing water to the land, and that of coltivating the soil, hailding foncos, and promming othor nowemary
 first cost of the three items per acre. It also shows the total valum of this samo lima, as piven provinholv, ami the difference or increase in value to the fumer or owner of thene impated aroms. From fla lable it aphembat that the total first cost of this land, excluding the sublumid states, was $877,190,000$, and the raluw, as devital from the

The total amount expended each yoar in mantaining systems of indgation may he assumeth, fir prapusers of comparison, to be represented by the total acreage irrigated multiplied by the arompe wpumbiture fut aro as reported by the irrigators. This is given in romod nombers in the tahle on the following page and the tatal value of products as previously shown is placed in comparison with it. The difterone represents a mat valum of products from the irrigated land, or the sum by which the irrigutor must peimbure himsull fin his habr and expenses and for iutcrest on the capital investerl. This table shows that si3, Tat, 000 was the probublo ammont
 previously assumed as the first cost of these systems.

TOTAL COS' OF WATER AND OF MAINTAINING DITGHES IN THE ARID REGION IN 1889-1890, AND TOTAL VALUE OF PRODUOIS OF IRRIGATED LANDS IN 1889.

states and ternitomieg.	Total cost of water.	Falue of products.	Difference.
Total	\$3, 794,000		\$49, 263, 000
Arizona	102,000	916,000	814, 000
California.	1,607,000	19,080,000	17,473,000
Colorado.	704, 000	11,686, 000	10, 082,000
Idaho.	174,000	2, 806, 000	2, 032,000
Montama.	333.000	4, 544, 000	4, 211,000
Nerada.	188,000	2, 899, 000	2,711,000
New Mexico	141,000	1, 174, 000	I, 033,000
Orgonon.	107,000	2, 478, 000	2,300,000
Utah..	240,000	4, 750, 000	4,510,000
Washington	37,000	83:1, 000	797,000
Wyoming.	101,000	1, 895, 000	1,704,000

COSI OF IRLLGATING CANALS.
Classifying irrigating canals and ditches according to their widths, it has been found that for those averaging less than 5 feet in widtli the expense of construction, including headworks, flumes, and other adjuncts, was $\$ 481$ per mile; for those 5 feet in width and under 10 feet, $\$ 1,628$ per mile; and for those 10 feet or more in width, $\$ 5,603$ per mile. The greater number of the irrigating systems of the combtry have been constructed under such conditions that the owners can not give even an approximate estimate as to what they really cost. Many of them have been built by the efforts of a fow farmers, acting originally in partnership, and have been enlarged from year to year as more land was brought under cultivation and population increased. Farmers as a rule have not kept account of the amount of labor or money expended on such works, and in cases where they owned the irrigating ditches they have not taken into consideration the labor expended upon the ditches at times wheu farm work was not pressing.

The average cost per mile of the three classes of irrigation works is given for each state and territory in the following table, which exlibits the variations in cost due to difference in topography, thoronghess of construction, and accidental circumstances. Oalifornia heads the list as to cost. The differences in cost were due largely to the condition of development of irrigation, the states where the methods were crade and simple generally showing a less average expenditure, although the existence of one or two great works has introdnced appareat departures from this rule.
average cost per mite of constructing mreigating canals and ditches

states anir territories.	Under 5 feet in wielth.	5 to 10 feet in. width.	10 foot ank overr in width.
General average .	¢ $\$ 81$	\$1, 628	
Arizona	471	1,674	5, 274
California.	885	5,957	15,511
Colorado..	380	1, 131.	5, 258
Idaho	205	810	1,320
Montana.	325	800	2,300
Norada.	200	1, 150
Now Mexico	310	581	6, 000
Oregon	260	1,000	1,300
Utah.	403	1,025	3, 072
Washington	285	I, 236	2,571
W yoming. .		837	3,884
Subhumid region	303	447	1,884.

WATER SUPPLY.
Facts concerming the water supply for irrigation have been ascertained in a general way by correspondence with irrigators and owners of canals and ditehes, mainly by means of special irrigation schedules sent to all parts of the west. Obviously it is not possible in this way to obtain exact statements, for data as to the amount of water ayailable or utilized for irrigation can be obtained only by means of neasurements made by engineers skilled in such matters. The average irrigator has very indefinite notions concerning the amount of water flowing in streams, especially in those of considerable size, and in fact it is almost impossible for any person who has not made a specialty of such matters even to approximate such quantities with success.

As a general statement it may be said that thronghout the arid region there is hardly a stream of small size from which water can be conducted readily upon arable land that has not been utilized to its full capacity during the summer season. To increase the area under irrigation it will be necessary either to use greater economy in employing the water, so that it will cover larger areas, or to store the flood and waste waters of the nomirrigating season. A great increase in the acreage cultivated can come also by the construction of expensive works to divert the water of large rivers upon lands which can not be watered except by the expenditure of a large amount of capital. Taking the country as a whole, there are very few localities, if any, where, as in the past, a farmer can divert water unclaimed by others, and by means of a simple ditch constructed by himself and his neighbors bring his farm under irrigation.

From the replies of irrigators throughout the country, it is apparent that in 1888 and 1889 there was a deficiency of water supply for the land then under cultivation along most of the streams. By a comparison of all the facts it is evident that, taking the past decade as a whole, there was an unusually large amount of water in the streams in $\mathbf{1 8 8 5}$ and 1886, and that this amount decreased year by year, although by no means constantly in all localities. Thus it happened that while the area under irrigation was rapidly increasing, the water supply as a whole decreased, and during the years of drought, namely, 1888 and 1889, and in some localities 1890, there was a general loss of crops upon irrigated lands, due to the fact that alarger acreage was tilled than could be irrigated by the methods in nise.

Not only was there loss of crops in many comuties, but the areas which were irrigated and from which crops were obtained did not in many instances receive a sufficient amonut of water to produce large or satisfactory results. Many statements have been made that, owing to insufficiency of water during the last part of the season, some of the cereal plants were cut for forage or were hardly worth the gathering.

The simple fact that the area which can be irrigated is dependent upon the amount of water flowing in the streams is often ignored in general discussions of irrigation and its possibilities. It is often taken for granted that because along some river there are vast areas of fertile land, some of which has been irrigated profitably, larger and larger areas will, with the progress of settlement, be brought under cultivation to an indefinite extent, the assumption being tacitly made that since the river drains a large area its waters must be proportionately aboudant. It is nutortunately the case that many of the rivers.of the arid region occupying a prominent place upon the map carry a very small amount of water for a part of the year, and this water is all utilized or needed for the land now wholly or in part under cultivation.

DUTY AND VALUE OF WATER.

The duty of water is the term used to express the relation between the quantity of water used in irrigation and the area upon which it is employed. If a given strean tlowing at the rate of 10 second-feet irrigates thronghout the season 1,000 acres, it is said that the duty of water is 100 acres to the second-foot. A second-foot of water is the quantity represented by a strean 1 foot wide and 1 foot deep flowing at the average velocity of 1 foot per second. The duty, as might be inferred, differs very widely with the character of the water supply, the methods of employing it, the character of the soil and erops, and perhaps more than all with the skill and experience of the irrigator. It is necessary, however, to assume certain averages in order to ascertain the value of flowing water.

The average duty of water most widely accepted is that originally taken by Powell (a) as 100 acres to the secondfoot. In practice some irrigators undoubtedly reach a higher value and others a lower one. Throughout the arid region there is a popular expression of " 1 inch to the acre"; that is to say, water flowing in a stream of moderate size will irrigate at the rate of 1 miner's inch to the acre. The miner's inch is a variable quantity, depeuding upon the method of measurement and the character of the aperture through which the water flows. In many of the states most of the details of measurement are defined by statute, but even then there is often uncertainty. For practical purposes, however, it may be assumed that in California 50 miner's inches equal 1 second-foot, and in Colorado and adjoining states 40 miner's inches, or even less, are equivalent to the same. This rate of 1 miner's inch to the acre, therefore, would give an extremely low duty of only 40 or 50 acres to the second-foot, but it is probable that in many localities where there is an ample water supply it is used as freely as this. The saying is so common that the majority of the irrigators who have formed any opinion on the sulject liave given this as the common practice. Nevertheless there can be little doubt that a higher duty is generally obtained.

Upon the new lands of Utah, Idaho, and Montana it is probable that the duty of water averages about 70 acres. to the second-foot, and that it can be readily bronght up to 100 acres. In California, in localities where water is searce and great care is talsen in using it, the duty has been found to be 200 acres or more, in exceptional cases rising to 500 acres or over, this high water duty being obtained usually in the case of orchards, in which the water is conducted by pipes to each tree. The state engineer of Colorado in the fifth biennial report estimates the duty of water of certain streams at from 168 to 424 acres per second-foot, using in this connection the acreage estimated by the water commissioners. By substituting the acreage from which crops were obtained as shown by this census,

[^0]the duty has been found to be from 90 to 200 acres to the second-foot. This high duty of water is unquestionably due to the fact that some of the water returns by seepage to the strean and is used a second time. As a conservative estimate, as well as at convenient one, 100 acres to the second-foot may be considered as the average daty which has been obtained muder favorable conditions and by the employment of ordinary skill on the part of the irrigator.

By taking a definite quantity to represent the duty of water, viz, 100 aeres to the second-foot, and by ascertaining the average value of this water to the land, it is possible to obtain some conception of the value of tho water resources of the country. Taking the average value of the water right as $\$ 20$ per acre and the average first cost as $\$ 8.15$ per acere, the difference, $\$ 17.85$, can be considered as the value of the flowing water to each acre. If then 1 second-foot irrigates 100 acres, its value under these assumptions is $\$ 1,785$. Thus, for example, a smali river or creek corying thronghout the inrigating senson 100 second-feet should be worth at least $\$ 178,500$.

ranniall.

In any disenssion of inrigation it is essential to make reference to the quantity and character of precipitation, for this governs not only the questions as to necessity of artificially applying water, but also throws some light upon matters of water supply. The data concerning rainfall have been so carefully collected and published by the United States Signal Service that it is sulficient to refer to its reports. In order to show in concise mamer some of the principal facts several diagrams have been prepared giving graphically the annual and mean monthly raiafall at varions points in the western lanf of the United States. The first of these, entitled "Annaal raiufall ati important stations in the western part of the United States", exhibits by a series of vertical lines the relative depth of rain at differentipoints through a series of years. These are arranged in a rude geographic order, the stations given
diagram of annual rainfall at important stations in the western part of the united states.

on the left hand side of the sheet being those near the Pacific coast and those ou the right haud on the great plains of the Mississipni basin. The great fluctuations year by year are shown by the varying heights of these vertical lines or coltums aud also the irregularity or lack of unitormity. It is possible to pick out one or two years during which there was umsually large or small precipitation at most of the stations, but these are rather exceptional than
otherwise. In 188t, for instance, the precipitation at a number of places was above the average and in 1885 less; but taken as arole the plate illustrates the fragmentary character of even the best of the data and the great irregularity in anmual rainfall.

The next plate, on the contrary, is characterized by a great uniformity, since it has been constructed from averages of from 15 to 20 years. It exhibits the average rainfall by months, the stations being arranged, as in the other plate, with regard to their geographic position. A prominent fact seen on this plate, as on the preceding, is the small amomt of rainfall at the stations well within the arid region, but perhaps the most striking feature is the gradual change in distribution of rainfall throughout the year found in proceeding from one side of the diagram to the other. On the east, in the Great Plains region, the greatest rain oceurs in the summer months, while in the west, near the Pacific ocean, the summer is the time of diminisling rainfall, succeeded by the annual drought. In the center, as, for example, at Fort Bridger, the rainfall is fairly evenly distributed or somewhat irregular. It is also interesting to compare the minimum rainfall shown at Yuma, Ariz, with that at Portland, Ore.

General A. W. Greely, Chief Signal Officer, has classified the distribution of rain according to months under a number of curves (a) typical of certain portions of the conntry. These curves, placed one above the other, bring out clearly the great difference in the distribution of precipitation between California and Colorado, and show that althongh in some points in California there may be a greater ammal rainfall, yet the quantity of rain which falls during the summer is exceedingly small, and in order to save the trees and vines it becomes as necessary to irrigate as in regions of less amual precipitation.

In the present report, muler the description of states, the quantity and distribution of the rain will be further diseussed. Thronghout the greater part of the arid region there have been relatively few points where rainfall measurements have been made, and these have been mainly in the vicinity of cities and towns of considerable size. Concerning the precipitation on the great mountain areas, from which the important streams come, little is known.

ARTESIAN WELLS.

A small amount of water used for irrigation is obtained from artesian wells, and therefore the census entumerators were instructed to include these within the agricultural schedule. By a tabulation of the returns it has been found that in the states and territories forming the western part of the United States there were 8,097 artesian wells upon farms in June, 1890. The artesian wells southeast of Minneapolis, supplying many cities and towns of Wisconsin and northern Illinois, as well as points mone distant, do not enter into this discussion. The wells considered were in Kansas, Nebraska, North Dakota, South Dakota, Texas, and the states and territories west of them. Out of this total number of 8,097 wells, statistics concerning the depth, cost, clischarge, and other features were obtained for 2,971 , or 36.69 per cent. From this latter number of wells, fairly distributed in each state and county, averages have been drawn, which, when applied to the whole number, give the results shown in the following table:

ARTESIAN WELLS ON FARMS IN JUNE, 1890.

[^1]1.

This tahbe shows thati 3,930 wolls, or thist per cent of the total number on fams, were employed in irrigation,

 dincharge of the whole mumber of wells was $\bar{t} 4.4$ gallons per minute, or 0.121 enhe foot per second or second-toot. This gives a watur duty of 1 semoniliont to 100.17 acres; that is, the water towing liom these wells has irrigated

 the actual cost hao allowance should be male for many attempts, ageregating perhaps thousands, to obtain fowing water widhont sumess. The total nmber of these ean not be ascertaned, for failures in this line aresoon forgoten,
 large.

 Ogilem, Utah, fore the same gene.
'The amomb of water disohnome by atasian wells is so small that it has been fomd comvenient to employ a

 findelinite quatity, varying acoorling to the method by which it is measured, in some localities 40 and in others कo miners inches making a seombloot. In this discussion the gallon per minute, since it is in eommon tuse, is employed.

In the following table the number of wolls in onch county is given, together with the depth of the aecper and
 were obtained:

MRTESIAN WELLS, DEPTH, COS'I, AND FLOW, BY STATES AND TERRITORIES AND COUNTIES-Continued.

The artesinn weas are widely scattered, and individually they are of small size, excepting those in North Dakota, South Dakota, and Califoruia, where the artesian conditions extend over several hundred square miles. Each of these areas will be discussed or mentioned in its appropriate place in the following pages.

By far the greater number of the artesian wells in the west have been put down within the last decade, there being comparatively few which have been in existence for 10 years. In Califomia, however, cases are reported where wells have been flowing for 20 or even 30 years, the discharge not having decreased except through the interference of other wells. The success attained in sinking wells in some of the valleys of California and Colorado led to a widespread interest in such matters, and since 1884 attempts have been made to secure flowing water in the majority of counties of the western part of the United States.

Many cities and towns lave devoted money to experimental drillings, and in a few instances state governments luave favored such works by legislation or by direct appropriation. The national government in the early part of the past decade paid for the sinking of two wells upon the Great Plains, both of which were without success so far as flowing water was concerned. Perhaps the largest amount of experimental work has been done by railroads, whose need for pure water for locomotives has led to drilling a number of deep wells along their lines. Owners of cattle also, botl as individuals and comporations, have spent large amounts of money in putting down deep wells in remote parts of the country in the hope of obtaining water for stock. In the aggregate a vast amount of experimental work has been done; and from the knowledge obtained in this way and by study of the geologital structure the extent of conditions favorable for artesian wells is fainly well known.

The geological conditions favoring the existence of artesian wells are found in mearly every state considered, although in restricted areas. The most notable basins are in North Dakota, South Dakota, Oalifornia, Texas, Colorado, and Utah; their importance as regards area and amount of water delivered being approximately in the order named. These areas, outlined by successful wells, are small compared to the total land surface of each state, a possible exception to this rule being in the case of North Dakota and South Dakota, where artesian water can apparently be obtained over perhaps one-fourth of these states, providing that wells are drilled to a depth sufficiently great.

Comparatively few artesian wells have been put down for irrigation alone, and the utilization of the water in raising crops has been what may be termed an afterthought of the owners. The greater number of the wells were drilled primarily for the purpose of obtaining drinking water, but since the amount consumed in this way must be small, even insiguificant, the large surplus is available for other uses. Thus it is that, although the expense of irrigation from artesian wells is in many instances so great as to appear to be prohibitory, yet as other more important purposes are served and the water otherwise would be wasted, it results that irrigation by this method is profitable, especially for intensive agriculture.

The advantages of artesian water for irrigation lie manly in the matter of convenience and independence of the owner. Having a well on his own land, snbject to his exclusive control, the irrigator can employ the water when he pleases without waiting for his turn, as in the case of the famer taking water from a company ditch. On the other hand, however, although he can obtain the water at, all times, it comes, except in the case of a ferw remarkable wells, in a very small stream, so small that it requires great care and patience to conduct it from point to point. The dry soil drinks up this little stream with a rapidity almost as great as that with which it comes, so that many instances are reported where the farmer has been wable to carry the water more than 200 feet from the well. The temperature of the water, especially from the shallow wells, is usually low, from 40 to bo degrees fahrenheit, varying very slightly thronghout the year. On a hot summer's day this water, if applied at once, might injure the vegetation.

For these reasons, namely, the small size of the stream and the low temperature of the water, it has been found advantageous wherever possible to build small reservoirs in which the water from the well can accumalate and become warmed by the sum. By this means a large quantity of water, warmed nearly to the temperature of the air, can be turned at once upon the fields in a stream sufficiently large to force its way from point to point, rapidly
wetting the surface with comparative uniformity. In considering the cost of irrigation by artesian wells, therefore, the expense of constructing and maintaining a small reservoir should not be overlooked. Unfortmately, in many cases reservoirs are not feasible, either on account of peculiarities of the surface or because the water from the well does not rise to a height sufficiently great.

Artesian water is generally regarded as having less value for irrigation than water from rivers and creeks, from the fact that the latter usually contains a large amount of silt, which is believed to emich the land. Well water, on the other hand, is almost always clear, although it sometimes carries a large amount of mineral salts in solution; the artesian waters ranging from those almost as soft as rain water to the strongest brine. When water, although containing but a small amount of saline matter, is used for inxigation, the salts left by evaporation gradually become concentrated, and may reach a point, especially if great care is not taken, where they completely destroy vegetation. This also is the case with many river waters, and may be obviated to a certain extent by thorough cultivation of the soil and proper management.

The majority of artesian wells are upon low grounds, the water only rising slightly above the level of the bottom lands of the valleys. This, as regards irrigation, is especially unfortunate, from the fact that these lower grounds are often below irrigating canals and are to a greater or less extent wet by the seepage from the canals or from the rivers. Wherever the pressure is sufficient to lift the water to lands upon the benches or sides of the valley above irrigating ditches the water has unusual value, but these cases are rare. In spite of this fact, however, flowing wells even in countries covered with a network of canals are valuable, from the fact that they furnish thronghout the year a continuous supply of water snitable for domestic purposes and for cattle. During the winter time esperially, when the water is turned out of the irrigating clitches, the artesian wells prove of great service.

The development of the known artesian areas by the sinking of new wells has proceeded rapidly. The examiuation of statements from the owners of artesian wells demonstrates ummistakably, however, that the majority of wells show a gradual decrease in the amount flowing from them. Many wells do not exhibit a perceptible change in this regard, but the number in which shrinkage has occurred is sufficiently great to justify an exmination into the causes prevailing in each basin or at each group of wells. This decrease in discharge has often resulted from mechanical imperfections in the construction of the well, which end in elogging or injury of the tubing or casing or in filling the lower part of the well with fine sand.

A more serions canse of diminution of flow is that due to loss of hydrostatic pressure resulting from an increase in the number of wells or from pumping one or more of them. The water in the pervious sands or gravels can never be completely exhausterl by artesian wells or even by pumping, but it is comparatively easy to make the openings so numerous and large that water no longer has an opportunity of accumulating in the ligher parts of the bed to an amount sufficient to exert great pressure at points lower on the dip of the beds.

Examples of the injury or even total destruction of artesian wells by increase in the number, or by reckless drilling through the confining strata, are to be scen in many parts of the country. The decrease of flow or complete stoppage of many wells of the Deuver basin is well inown. In California, along the coast sonth of San Francisco, are a number of small artesian areas where wells have been flowing for many years. The result of putting down new wells within the second half of the past decade has been that many of the older wells have stopped flowing excent at times of high tide or during the rainy season. In fact, it is comparatively easy to find wells in auy of the older basins which flow only during the winter. Legislative protection against interference with this valuable class of property is in many states essential in order to prevent its complete destruction.

The largest and probably the most permanent artesian areas of the country, namely, those of North Dakota, South Dakota, and Texas, lie east of the arid region and within that part of the debatable ground known as the subhumid, where irrigation is rarely necessary, althongh often of great benefit. On account of the fact that good crops are often raised by dependence upon rainfall, it has been difficult to convince the farmers within these artesian areas that irrigation can be made profitable or practicable from these wells. Even within the arid region few artesian wells have been put down by farmers primarily for inrigation, and it is doubted whether this can be profitably done except in instances where it has already been proved beyond a doubt by neighboring wells that a large artesian flow can be obtained. The risk and cost involved are often too great to justify the experiment. In unexplored territory the chances of striking flowing water are against the prospector, for even if the geological structure is fivorable, the beds may be comparatively impervions to water, or it may not rise to the surface, or, as is often the case, it may be strongly saline. The expense of maintenance also in the case of wells delivering pure water is occasionally a notable amount, owing to the necessity of keeping them clean or of repairing acciclental injuries.

The efficiency for irrigation of the water from artesian wells varies widely with the character of the crops, soil, and climate. The greater part of the water is used upon small gardens in the vicinity of houses, and for fruit and shade trees, for watering lawns, and for raising grass either for pasturage or for hay. Toward irrigating the ordinary field crops, such as wheat, rye, oats, and corn, water from this source has been employed to only a small extent. As will be seen by examining the figures previously given, the number of acres irrigated per well in each

YIEW OF CEMENT LINED CANAL NEAR SANTA ANITA, LOS ANGELES COUNTY, CALIFORNIA, ILLUSTRATMG IMPROVED METHOD OF CONDUCTING WATER
state is by no means proportional to the discharge. In California and Colonado, for instance, approximately the same number of acres per well are irrigated, althongh in the case of the former the average discharge is over four times as great as in the latter. This difference is traceable to the character of the soil and surrounding circumstances, the discrepancy arising from the fact that in the San Lais valley in Colorado the wells irrigated large areas of land in the immediate vicinity of canals, where the ground water stood comparatively near the surface, and thus the small amount from an artesian well was very effective, while in some of the other states the 1 grounc. a the vicinity of the well was dry to such depths that it drank up the water with astonishing rapidity.

RESERVOIRS.

In various parts of the country attempts have been made to increase the amont of water available during the irrigating season by means of storage works holding a portion of the Hood waters matil most needed. Gieat interest has been shown in the development of these works, and their necessity is attested by the popular discussions of the alvantages to arise from their construction. There is hardly a county in the whole arid region in which there are not a number of sites at which it has been proposed at one time or another to construct a reservoir. Unfortunately, however, experience has proved that the matural advantages for the profitable construction of storage reservoirs are not widely distributed, and there are few places in any one state where under present couditions it will pay to hold water. As a usual thing the localities pointed out are deficient in storage capacity or are so located that a perfectly safe dam can not be constructed with reasonable ontlay. Progress therefore in the increase of water supply by this means has been and monst continne to be slow, relative to the development of systems for distributing water. In certain parts of the combtry, for example, in Colorado, many small reservoins have been built by farmers for the purpose of holding water for individual use, but the aggregate capacity of these is almost insignificant.

The best known storage works of the country are probably the Sweetwater reservoir of the San Diego Land and Town Oompany; the Cuymach reservoir of the San Diego Elume Company; the Benf Valley reservoir, belonging to the Bear Valley Company (these three being in southern California); Take Yosemite, near Merced, Cal, and the Castlewood reservoir, near Denver, Colo. In addition to these there are a number of other works in process of construction or projected, notable among these being the Hemet Falley dam, the Arowhead works of southern Califormia, and the Pecos dam, in southern New Mexico.

Besides the reservoirs mentioned above, which are wholly artificial, there are thronghont the west a number of lakes used to a certain extent as storage works. In the case of the larger of these lakes the natural fluctuations of water level are almost beyond control, and the evaporation from the surfuce is nually far greater than the amount of water utilized. The largest of these are Utah lake, in Utah; Bear lake, in Utah and Idaho; Late Tahoe, in California and Nevada; Clear and Eagle lakes, in Califomia. It is probable, also, that Goose lake, in Oregon and California, conld be used, as well as Klamath lake, by the construction of suitable outlets. A comparisom of these large hodies of water with the wholly artificial reservoirs is hardly possible, since the area of the former is nearly 100 times as great.

METHODS OF CONDUCTING WATER.

Water is usually brought from the ruming stream or reservoir by means of open ditches or canals built on a grade such that it shall flow freely. Many considerations lave to be takes into account in determining the fall of the ditch. As a general rule, the less the grade the more land the ditch will command at a given number of miles from the head, but, on the other hand, a canal of gentle grade requires a larger cross section than one of more decided slope, and if the velocity of the water is small the chamel may be entirely choked by aquatic plants. Too great a slope, however, results in the washing away of the banks ant bed, requiring constant care and expenditure. Iittle attention was given to details of this kind in the laying out of the older ditches and canals. As experience has been gained and larger and more expensive enterprises have been entered upom, engineering skill has been called into practice, and the open channels and flumes lave been improved upon in varions ways. Th many instances the open earth ditches have been replaced, in whole or in part, by conduits less wasteful of water. In southern California especially, where, owing to the absence of frost, there is less liability of destruction, cement has been largely used in various ways. For example, some of the open ditches have been lined with stone aud a coating of cement placed upon this, making the sides and bottom of the ditch smooth and impervious, thus at the same time increasing the capacity while diminishing the loss by seepage.

In varions parts of the country pipes of wool or of iron are being employed to a considerable extent to prevent loss of water, especially at points where it is difficult to maintain an open channel. The wooden pipes are made of strips of plank, with their edges carefully beveled or fitted together, These strips run lengthwise of the pipe, and no two terminate at the same point, so that the pipe when complete is practically continuous. The pieces are bound together and held in place by iron hoops at short intervals. The iron pipes generally employed are made of sheet irou put together in various ways, usually, however, in short lengths. Many styles of pipe are
won the market, as single and double riveted, spiral, double cemented, and coated. Cast iron is used to only a small extent, owing to its heavy cost. Where frosts are not feared cement, or stoneware pipes are often employed, especinlly in connection with the cement ditches mentioned above, the water in these pipes being submitted to slight pressure. Taking the arid region as a whole, however, the open eartl ditch is the rule and such devices are exceptional, warking perhaps the begiming of better things.

METHODS OF APPLIING WATER.

The methods of applying water to the soil in use in different parts of the arid region depend largely upon the character of the soil and crop, the quantity of water usually available, the slope of the ground, and the degree of skill on the part of the average irrigator. The grasses and other forage crops, notably alfalfa, when growing apon nearly level ground, are usually flooded by cutting the side of the distributing ditch, constructed along the highest parts of the field. The opening in the side of the ditch is usually made by a shovel or hoe, and is filled in again after the adjacent portion of the field has been irrigated. Sometimes, however, small gates or openings through the side of the ditch provided with suitable sliding doors are placed permanently, so that the quantity of water can be regulated with some degree of care. From the openings in the side of the ditch the water is allowed to find its way in all directions, and unless the surface is perfectly level some portions receive far more than others. Thus fields slightly undulating will often show bave spots where the plants have not received sufficient moisture. Where the supply of water is ample, especially on the edge of some broad valley, enormous areas of the native grasses are thas flooded, little care being taken to distribute the water evenly, since the yield per acre is at best small.

On very gently sloping lands what is known as the check system has been largely in use, especially in California. This consists in mising low ridges of earth, about 1 foot in height and 10 feet or more in width at the bottom, these being built along contours and thus meandering across the fields as required by the slope of the ground. The space between the distributing ditch and the first check or small levee, which may be at a distance of from 100 to several hundred feet, is first filled with water, and the soil being saturated the low levee is cut in one or more places and the surplus water, together with an additional supply from the distributary, is allowed to fill the second checks or levees. These checks are so broad and low that they do not interfere with cultivation, the furming machinery passing over them without difficulty. Among the Mexicans this system of checks is carred to an extreme. They are phed vexy near together and consist of sharp, narrow ridges, inclosing patches of grain or vegetables often not more than 20 feet square. Each of these in turn is made into a pond by turning water in from the nearest ditell.

The cereals and other field crops are irrigated by means of furrows, whose distance apart varies with the character of the soil. In Utah and many other parts of the arid region, after the grain is planter, what is known as a manker is run over the field, rolling or digging small furrows 18 inches to 2 feet apart, through which the xwater is allowed to flow two or three times during the growing season. Vegetables and corn are wet by turning water into the furrows between the hills or rows, these having previonsly been plowed in a direction such that there shall be a continnous gentle fall from the distributing ditch to the far end of the field. The irrigation of plants on land laving a decided fall requires considerable care and skill on the part of the farmer in order to prevent the washing awny of the soil and the unequal distribution of water. For this end furows are plowed, winding along the ground in such a mamer as to reduce the fall, and small quantities of water are used at a time in order that it may not break away and cut channels down the slopes. For fruit trees and vines the water is usually applied by furrows; the water seeping from these furrows satmates the soil uniformly, and the quantity is easily regulated.

In many cases steeply sloping lands which have been considered as useless for agriculture have been found to possess a soil and climate especially adapted to fruit culture. These lands have in many instances been terracen and the water allowed to flow in channels along each of the benches thus made, erosion being prevented by conducting the water from terrace to terrace by wooden, metallic, or stone conduits. The fruit trees receive moisture by percolation from the chamels or furcows or by the complete saturation of the surrounding soil from small pools formed on the surface. This latter method of applying water has been largely practiced by fruit growers, but is perhaps falling into disuse. It consists in surrounding each tree with a ridge of earth, forming a basin, into which water is let from the distributing diteh. This basin system, which is similar to the methods practiced by the Mexicans, is used either upon sloping or level ground. Among the disadvantages of the use of basins are those arising from the fact that the high ridges render cultivation difficult and expensive, and from a tendeney to apply too much water to a restricted area. For these reasons orchardists are gradually learning to apply water by means of furrows, which can be quickly made after each cultivation.

In orter to reduce the length of these furrows and to conduct the water with as little loss as possible, small wooden flumes, placed on or above the gromed, are sometimes built through an orchard leading from the distributing ditches to the furrows. In this fume openings 1 inch square are cut at intervals of from 2 to 5 feet or more, each of these being closed by a small metallic slide. When ready to inrigate, the small flume is filled with water,

and a number of the small shntters are drawn out, allowing the water to escape into furows, which in trin condnct it to the trees or other plants. These wooden flumes can be laid on meven ground or curied over steeply sloping. surfaces by introducing vertical drops from time to time, thus making it possible to irrigate the hillsides.

The most economical method of distributing the water applicable in the case of onchards and vineyards is that by means of pipes laid muder ground. This is, of course, very expensive, and can be only adopted where the falue of prodncts is high, as in the case of citrus and other fruits. Attempts have been made to deliver water to trees. and vines throngh porous earthenware pipes, but this, though theoretically perfect, in practice has not been successful, owing to the clogging of the pipes by roots and other causes. Where water is brought to each tree or" gronp of trees by means of pipes it is customary to provide a small hydrant, through which water rises to the surface and is conducted away over a small adjacent area.

ARIZONA.

Total population (average per square mile, 0.53) 59, 620
Number of owners of farms (2.39 per cent of population). 1, 426
Number of irrigators (75.39 per cent of farm owners, 1.80 per cent of population) 1,075
Area of territory, land surface (112,920 square miles) $72,268,800$
Area irrigated in census year65, 82 21
Area of all farms, 8.03 per cent improved 1, 297, 033
Cereals raised in census year, including 29 acres in rye 22, 701
Barley, average production 23.77 bushels por acre 10, $6 \cdot 14$
Corn, average production 19,06 bushels per acre- 4, 331
Oats, arerage production 23.10 bushels per acre 1,472
Wheat, average production 16.12 bushels per acre 6, 22:5
Alfillia 19, 945
Totall yalue of all farms, iucluding lund, fences, and buildings \$7, 222, 230
Estimatecl tetal value of the irrigated farms, as abore \$3, 204, 000
Estimated ralue of all farm productious (sold, consumed, or on hand) for 1889 \$1, 045, 970
Estimated value of production, as above, from farms irrigated in whole or in part \$916, 000
Average size of irrisated farms acres.
Average size of irrigated farms of 160 acres and noward do. 287
Per cent of acreage of irrigated farms of 160 acres and upward to total acreage irrigated 34.42
Average size of ixrigated farms under 160 acres 43
Average first cost of water right per acre $\$ 7.07$
Average annual cost of water per acre. $\$ 1.55$
Avelage lirst cost per acre of preparation for cultivation $\$ 8.60$
Average value of irrigated land, including buildings, ete., in June, 1890 , per acre
Averige amual value of products per acre in 1889 $\$ 13.92$

The above table gives in condensed form the primeipal statisties concerning irrigation in Arizona, showing its importance to agriculture and affording a means of comparison with other branches of industry. In order to inake plain the development of irrigation in this territory relative to that of other great political divisions, it shond be stated that the assumption has been made that the arid regions are bounded by certain arbitrary lines, embracing Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, 16 eastern counties of Oregon, Utah, 13 eastern counties of Washington, and Wyoming. As a matter of fact, however, portions of the areas above named are far from being inid. On comparison with these states and territories it appears that in mumber of irrigators and in acreage irrigated Arizona in 1889 stood next to the bottom of the list, coming above Washington, this latter state having the least number of inigators and the smallest area irrigated. In average size of irrigated farms it was sixth, in this respect standing between California and Oregon. In average value of products per acre in 1889 it was number 4, Califormia, Utah, and Washington exceeding it.

In comparing the areal extent of irrigation it appears that a smaller proportion of the entire territory was irrigated (less than one-tenth of 1 per cent of the eutire land surface) than in any other state or territory. This is becanse Arizona embraces an enormous extent of the deeply eroded platean country traversed by the Colorado river and also of the desertlike region adjoining the republic of Mexico, both of which areas are almost uninhabitable. Althongh the number of farms and of irrigators was small, yet, the proportion of farms irrigated was large, 75.39 per cent of the total number using water. In this respect Arizona stood thind, Utah and Nevada exceding it. On the other hand, in comparing the extent to which irrigation was practiced on these farms and the relative area actually irrigated, Arizona stands at the head of the list, 43.21 . per cent of the total farm area owned by irrigators being irrigated, a percentage over twice as great as that prevailing throughout the arid region. In averge value per acre of land irrigated, including improvements, $\$ 48.68$ per acre, Arizona was number 8 , while, as previously stated, in average value of products, $\$ 13.92$ per acre, it was number 4 . In first cost of water rights the territory was fifth, and in average anmuai cost of water per acre, $\$ 1.55$, it was second, being exceeded only by Califorma.

By reference to the map of the western part of the United States it will be seen that the inrigated areas lie manly in the central and southwestern half of the territory. The high plateaus of the northern part of the territory are bounded by a series of great escarpments, the face of these extending diagonally across the center of the territory and facing the phains of the Gila basin. The winds from the west sweeping across the low plaius are
defleted upward by the abrupt slopes and monntain masses bordering the platem, and a portion of their moisture is precipitatal, foming almost inmmemble creeks which mite to form the Verde, Salt, and other tribntanies of the

 Hsablly with stock basing or in the immediate vienity of mining towns. Fon the greater part of the ternitory,

 mins. During the wintor and in the enty sundig and late tall the water is used on the alfalfond haty erops, of

 by any other erop. Later in the spming, when the divers begin to dedime and the water supply becomes seanty in
 begin, in many phases tho whole fow is employed upon the trees and vines.

Tha water is appleal in most, eases by fooming, as, for instance, on heern and grain, or throngh turows had

 many localities look lonwath to better methots of tistributing and applying water. Since the soil and local
 problurts. There is a gememb impression that in many ases too mon water has ben used and thatin the fature
 water abl loss of "rops on impated lam were reported by many of those whose dights to water vere secondary to

 matured hefore this time, so that what litile water remained could be msed for orchads, vineyards, and alfatfo.

 empineuring computations.

HBAD WHLLA,

In this tomitory mo llowing wolls wore reforted upon farms in June, 1890 . Deep wells have been drilled in

 in the cental patt of the terntory, it is chancel there is a fowing well, hat the facts concenning it havo not been asempained.

 or hy windmills. At Yuma are wells from 75 to 100 foot in depth, pranped in this manner, the water being used to a very small extent for ingation. None of theso wells fow, bat it is reported thet in one case at least the water comes fo within 20 leet of the surface.

RAINEALAL.
The table on the following page gives the jrincipal tata concerning the amomband distribution of predpitation in Arizona. It, shows tho mom monthly and anmal lainfall at stations where measurements have been made for.

 manal rainfall of 20 inchos and over.

Mean monthly and annual rainfall at stations in arizona.
[T. indicates at teice of rain, less than 0,0t ineh.]

hoc'alities.	Alii. turle in feet.	Length remord.	Jame ary.	Tebra. ary.	Marth.	April.	May	Jıne.	July.	$\begin{gathered} \text { Au- } \\ \text { gust. } \end{gathered}$	Suptem-	Oefober.	$\begin{aligned} & \text { Novem- } \\ & \text { besw. } \end{aligned}$	Decem. ber.	Annual.
Apacho counts:		Fres Mros.													
Tolbrouk...	5,047	3 3 10	0.30	${ }^{1.71}$	0.72	0.157	0.16	0.12	1.:31	1. 40	1.18	0.68	1. 08	0.72	9. 29
Fort Apmehe	5, 050	1810	1. 1.88	1.80 0.79	1.65)	0.84 0.67	0.47	0.78 0.72	4. 2.4	4. 20	1.54 1.80	1.34	1.17 1.16	1.93 0.87	21.04 14.10
Coehiso connty	1,500														
Wilcax	4, 46.48	$\begin{array}{cc}a 9 & 9 \\ 9 & 10\end{array}$	0.89 0.50	0.909	0. 0.51	0.08 0.02	0.12	(0. ${ }^{2} 29$	2.37 1.77	2.70 2.23 20	${ }_{0}^{1.21}$	0. 0.50	0.44 0.24	0.84 0.75	11.35
Fortit	+,781	23.2	7.17	1.77	1.27	(0. 19	0.28	0.6)	3. 28	2.90	1.34	0, 578	0.74	1.27	15.018
Fort Huachue	4,785	48	10.80	1. 27	0.97	0.11	0.15	(1, 3 ?	4. 29	2.92	2. 61	(1). 94	1. 12	0.95	16. 42
San Simon	3,611	a8 5	0.27	0.28	0.63	0.02	0.11	0.01	0.55	1. 04	0.22	0.30	11. 24	0.39	4.50
Gila comity: Fort Sin Carlus	4, 450	\boldsymbol{a}^{9} :	1,22	1.633	1.38	0.31	0.22	0. 2.4	1.83	2.43	11.101	0.75	0.67	1.85	3. 46
Grabau eomiy :															
Fort Thomas.	2,700	10	0.84	1.18	1.08	10.35	1.45	0. 26	2.48	2.31	0.03	10.63	0. 48	1.30	11.8.
Campp Goodwin	2, 350	a3 11	2.41	1.82	1.04	1.30	T.	0.69	3.35	5.78	3.80	1.39	1. 18	2.81	25.57
Fort Grant	4,860	$\alpha 17$	11. 92	1.24	1.13	0.38	0.20	11. 615	3. 80	3. 28	1.84	0.94	0.86	1.52	16.85
Phenix.	1,008	120	10. 30	0.87	10. 177	0.32	11. 12	11.09	(1. 72	1. 022	11.65	0.57	0.54	1.25.	7.38
Burkes		30	0.10	0.68	0.18	(1. 11	0.17	T,	(1. 122	1. 14	d. 57	0.02	0.41	0.28	a. 88
Wiekonburg	1,400	as 1	1.07	1.10	(1). 80	0, 52	0. 30	0.02	11.81	1.99	0. 60	0.18	0.51	1.89	9.85
Pima county:															
Fort Buchuni	2,400 5,330	$\begin{array}{rrr}419 \\ 3 & 11\end{array}$	1.14 1.47	1,15 1.51	0.83	0.28 0.80	0.10 0.14	11.30 11.82	5. 59	2.79	1.38 2.03 18	0.45 1.10	0.52 1.09	0.96 1.15	15.37
Camp Crittender	2,000	± 10	0.55	1.00	10.65	4. 26	0. 05	0.31	(6. 01	4.70	0.85	0.19	11.28	1.57	10.51
Pinal county:	3,800	${ }^{40} 10$	1.00	0, 70	10.45	1.21	0.10	0. 50	4.6.	4.05	1.95	0.08	1. 19	1.09	17. 13
Maricopa...	1, 190	138	0.14	0. 46	0.69	0.14	11.07	0.06	0. 10	0.01	11, 17	11.34	0.35	0.84	5. 17
Yavapai comnty:															
Camp Date Greek.	3,726	106 23 11	0.142	1.78	1.68	1.03	0.13	11. 24	3. 19	3.30	11. 29	0.46	0.64	1.40	14.22
Whipplo Barmeks (1)	5,389	2311	1.45	1.78	1.68	10.93	0, 08	0. 17	3.108	2.88	1.18	0. 36	0.82	1.85	17.06
Xuma county:	141	14.11	0. 39	(1)45	(1) 18	0.12	0.06	T.	1.13	0. 10	11.13	0.21	0.35	10. 04.	
Texas Hill.	856	a11 0	0.58	0.27	0.27	0.10	0.03		11.18	0. 15	0.34	0.61	0.26	0. 48	3.47

GONDIIION OF TRRIGATION IN EACH GOHNTY.

The following table gives some of the fundamental data of invigation during the census year in each of the comoties of the territory. Upon an examination of the figures it win be noticed that in general the value of products per acre increased as the average size of farm diminished. For example, in Maricopa county the averuge size, 108 acres, was the greatest in the ternitory, while the value of product, $\$ 9.26$ per acre, was the least. Next comes Yuma county, with 93 acres per farm and products averaging $\$ 10.50$ per acre, then Pinal, with 60 acres per farm and products of $\$ 11.25$ per acre. Tn other words, the large intigated farms were not as closely tilled as were the smaller, aud a lower priced erop resulted.

NUMBER OF LRRIGATORS, AREA IRRIGATED, TARMS, AND GROLS IN EACH COUNTY IN ARIZONA IN 1889.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline COUNTIES; \& Numlor of iviga. tors. \& Area irrigatod in neres. \& \& \& \begin{tabular}{l}
Ans of as. (a)
\(\qquad\) \\
Per cent of population.
\end{tabular} \& \& \begin{tabular}{l}
Trons. \\
Per cont of popalaLion.
\end{tabular} \& Arcai ol' counily in aures. \& Tham A \& \begin{tabular}{l}
REA. \\
Per cent improved.
\end{tabular} \& \[
\begin{gathered}
\text { Cereals } \\
\text { in } \\
\text { acres. }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { Alfalfa } \\
\& \text { in } \\
\& \text { acres. }
\end{aligned}
\] \& \(\left\lvert\, \begin{gathered}\text { Alama } \\ \\ \text { Par } \\ \text { comtor } \\ \text { area } \\ \text { of } \\ \text { cominty }\end{gathered}\right.\) \& inmga
\(\cdots\)

Pep
centor
total
farm

area. \& | TED. \qquad |
| :--- |
| Per cont of land ownterl by irrigators. | \& Avorage value of products por acre.

\hline Total.. \& 1,075 \& 65, 8:1 \& 01 \& 1,426 \& 2.39 \& 75.30 \& 1.80 \& 72, 208,800 \& 1,297,083 \& 8, 03 \& 22,701 \& 19, 045 \& 0.05 \& 5.07 \& 43.21 \& \$13. 92

\hline Ajnelib \& 182 \& 5,545 \& 10 \& 258 \& b. 01 \& 71.04 \& 4.25 \& 13,478,400 \& 1, 085, 535 \& 0.78 \& 3,693 \& 850 \& 0.04 \& 0.51 \& 32. 56 \& 13. 36

\hline Cochiso \& 52 \& 2,372 \& 40 \& 159 \& 2.77 \& 27.08 \& 0.75 \& 3,812,560 \& 1, 31, 613 \& 10.65 \& 3, 242 \& 614 \& 0.06 \& 7.53 \& 31.75 \& 26.93

\hline Gila...- \& 18 \& 7815 \& 45 \& 18 \& 0, 89 \& 100.00 \& 0.88 \& 2, 055, 680 \& 3, 3, 080 \& 22. 13 \& 375 \& 23 \& 0.04 \& 26.16 \& 20. 10 \& 24.85

\hline Graham. \& 190 \& 7, 550 \& 18 \& 201 \& 3. 5x \& 99, 00 \& 3.51 \& 3, 037, 280 \& 23, 533 \& 38.55 \& 4.823 \& 1,741 \& 0.19 \& 32. 11 \& 37.38 \& 16.00

\hline Marioopa. \& 327 \& 35,213 \& 108 \& 336 \& 3.06 \& 97.32 \& 2.98 \& 6, 1380,880 \& 61, 888 \& 78.79 \& 9,216 \& 12, 193 \& 0.50 \& 56.90 \& 60.14 \& 10.26

\hline Mohnvo \& \& \& \& 14 \& 0.97 \& \& \& 7, 252, 480 \& 1,781 \& 21. 45 \& 10 \& 202 \& \& \& \&

\hline $\mathrm{P}^{\text {Pimana }}$ \& 85 \& 3,085 \& 36 \& 114 \& 0.90 \& 74.50 \& 0.67 \& 6, 781, 4140 \& 81, 852 \& 16, 24 \& 643 \& 891 \& 0.05 \& 9. 69 \& 38.17 \& 30.36

\hline Einal... \& 115 \& 6, 910 \& 60 \& 124 \& $\underline{2.92}$ \& 92. 74 \& 2.71 \& 3,362, 000 \& 20, 804 \& 40.39 \& 2,066 \& 1,584 \& 0.20 \& 33.26 \& 37.09 \& 11. 25

\hline Yarapai \& 91 \& 3,762 \& 41 \& 161 \& 1. 85 \& 50.52 \& 1. 05 \& 18,711,040 \& 32,417 \& 52,34 \& 1.025 \& 1,716 \& 0.02 \& 11. 61 \& 20.22 \& 31.00

\hline Yuma.. \& \& 355 \& 93 \& 18 \& 0. 40 \& 46, 15 \& 0.22 \& 6,487, 040 \& 4,630 \& 12.03 \& - 8 \& ${ }^{1} 175$ \& 0.01. \& 11.99 \& 15.50 \& 10.50

\hline
\end{tabular}

a Includes owned and hired farms, assuuning me farmen to onch.
Apanime counry, located in the northeastern corner of Arizona, is second in size in the territory and sixth in the whole United States. The Navajo aud Moqui Indian reservations cover the northern end of the county, and the White Mountain Indian reservation is located partly in the southern end, while between these are the railroad grants, leaving relatively little land open for settlement. The Little Colorado flows across the center of the county, and then turning northwesterly flows through narrow canyons to the Colorado. The principal towns are along the Little Colorado, and its tributaries entering from the south, where there are areas of good agricultural lands. As a rule irrigation is required, although, especially at altitudes of 7,000 feet and upward, some dry farming
is reported to be successful. The water supply is somewhat linited, scarcity being felt especially in June, Jnly, and Angust.

A number of small irrigating ditches have been reported at Show Low, Taylor, Suowfake, and other points on Silver creek; also at Springerville, St. Johns (the county seat), Woodrift, St. Joseph, and other points on Little Colorado river. The principal crops irrigated were corn, oats, alfalfa, and beans. In the vicinity of Taylor are the ditches covering both sides of the valley and irrigating lands in the vicinity of Taylor and Snowtake. These ditches are from 3 to 4 miles long, and have cost in all about $\$ 25,000$. Work was begun in 1877 , mud the ditches were practically completed within a few years. Water rights lave cost from $\$ 12$ to sis per acre, and the ammal assessment has been from 90 cents to nearly $\$ 5$ per acre, the latter large amount owing to injuries by Hood. It is stated that it is usual to give 3 good waterings to wheat and oats, 2 for a crop of corn, and 1 or 2 irrigations for each cutting of alfalfa.

At Springerville, south of St. Johns and on the headwaters of Little Colorado wiver, are several ditehes on both sides of the stream. The principal ones were begun in 1872 and used in the following year. They are owned mainly by private parties, who share the expense. This is estimated to be amually about $\$ 1.25$ per aere. At St. Johns the main diteh is known as the Gibbons or Mill ditch. It is about 4 miles long, 6 feet wide, and has cost probably $\$ 10,000$. The principal crops irrigated we wheat, com, barley, and oats. The St. Joseph diteh heads about 12 miles from Folbrook and covers land on the north side of Little Oolorado river. It is about 7 miles long, 6 feet wide, and with the dam has cost about $\$ 45,000$. This latter, it is stated, has been replaced 8 times within 14 years. The arst cost of water right was about $\$ 7$ per acre, but the anumal assessments, the greater part of which have been for repairing the dam, have been from $\$ 2$ to $\$ 5$ yer acre.

Attempts have been made to obtain flowing wells, and the board of supervisors of the county, in compliance with an act of legislature, has offered a reward of $\$ 2,000$ to any person who should first obtain in flowing stream of water of not less than 17,500 gallons per day, such well, however, not to be upon military or railroad lauds nor within 10 miles of any other flowing artesian well nor within a milo of any permanent flowing stream of water.

Comms counry is in the southeastern corner of the territory bordering upon New Mexico and the republic of Mexico. In general altitude it ranges from 3,000 to 6,000 feet and upward. Agricultural lands are to be found in nearly all of the valleys or broad plains, the principal irrigated areas being on the western side of the county along San Pedro creek and its tributaries, mainly in the vicinity of Hereford, Fairbanks, Bensoni, and Tres Alamos. This stream furmishes the greater part of the water supply of the county, the other rivers and creeks being of such an intermittent character that irrigation is exceedingly difficult. Even in the case of the Sun Pedro there is far more land than the water will supply, and as a result litigation has arisen concerning the water rights. During periods of drought the entire amount of ruming water is diverted by the varions dams across San Pedro creek, some water reappearing in the chamel to be again taken out at points below.

Around the edge of Suphur Spring valley, which occupies the center of the county, a small amount of invigation has been practiced, mainly for the purpose of raising hay or for increasing the area of grazing lands. It is reported that in many localities wells reach water at from 10 to 40 feet, and it is probable that some of this can be brought to the surface with proft by means of pumping machinery. Deep wells have been drilled in the hope of obtaining artesian water, but so far as can be ascertained theso have not been successtul. Among the higher mounthin valleys small crops have been raised without irrigation, but as a whole it may be said that this method of cultivation is essential thronghout the county, and especially so for fruits. With an ample supply of water, orchards and vineyards are exceedingly protitable.

Gila county, the smallest in the territory, occupies a position largely within the drainage basin of the Salt liver, on the south crossing the monntains and reaching to the Gila river. On account of its position it is comparatively well watered, but the valleys are narrow and there is little arable land. The White Mountain Indian reservation covers the greater portion of the connty, leaving only a narrow strip of land on the western side. The tilled land is principaily along the Salt river, between Pinal and Tonto creeks, or in their vicinity. Among the headwaters of Touto creek and in the Tonto basin, at an elevation of from 6,000 to 7,000 feet, corn and potatoes are raised without irrigation if the land is carefully tilled. Other crops require the artificial application of water.

Gramam ooundy lies to the southeast of Gila, between Apache and Cochise counties, filling in the eastern side of the territory. It is thus in or near the headwaters of the Gila river, and, like Gila county, is largely mountainous. The principal area of agricultural land is in the Pueblo valley, extending from a canyon above Solomonsville for about 30 miles to Fort Thomas, the principal settlements being, in order, Solomonsville, Safford, Central, and Pima. The Gila is the source of supply for the valley. A number of clams are placed across it at intervals of 2 miles or more. When the flow of the stream diminishes in May and June the dams of logs, brush, and stone are tightened so as to turn all the water into the canals. Below each dam, however, the water begins to rise in the bed of the stream, so that by the time the next dam is reached there is apparently as much water as before. If the summer rains fail the river may become entirely dry in July and August, loss of crops resulting.

At present the acreage under cultivation is not greatly in excess of the usual water supply, and the losses are not such as to call for immediate water conservation. In view of future extensions, it is already recognized that active steps must soon be taken. There appears to be no comprehensive system of water distribution, and the
present needs point to a consolitation of the rarions small ditches into a few high-line canals, both to reduce the expenses and to effect a greater economy in the use of the water. The river, ocenpying a wide sandy bed, is unstable, and during treshets is liable to cut new channels, leaving the dams on dry land. Some cultivation by irrigation is successtul in the valleys sonth of the river at the foot of the motutains, where small streams or springs issuc. The greater portion of this water is lost for lack of facilities for holding the suring flow until hater in the season.

As examples of the irrigating ditches brief descriptions may be given as follows: the Union irrigation canal heads about 1.5 miles northwest of Solomousville. It is 13 miles long, 12 feet wide, and has cost $\$ 15,000$. The Graban ditch heads about 2 miles east of Safford, taking water out on the north side of the river. It is 4 miles long, wout f feet wide, and has cost over $\$ 2,000$. The work was begion in 1879 , and it has been enlarged since that time. It is owned by farmers, who divide the water and share the amual expenses, which are estimated to have been about $\$ 2$ per acre. The principal crops irrigated are wheat, barley, oats, corn, beans, Irish and sweet putatues, and garden vegotables. The Montezuma and neighboring ditches also cover land in the vicinity of' Satford, water being diverted from the Gila by means of dams built of wool, stones, and brush. These dams are often washed out, incrasing laggely the amual expenditures. The ownership in most of the irrigation works is divided into shares, each entitling the owner to a certain proportion of the water. A water master, appointed by the imigators, calls upon each when necessary to make repairs, or hires labor, which is paid for by a cash assessment.

In the vicinity of Pima are a number of ditches owned by asssociations of irrigators, who share the work and expense necessary to keep them in repair. The principal expense in these ditches is in rebuilding the diverting dams. The crops irrigated are alfalfa, banley, beans, and potatoes. Alfalfa is watered after each cutting, and the cereals receive 2 or 3 irrigations. Garden vegetables require imigation every 8 or 10 days, oreharls on or 6 wettings during the year, and vineyards 3 . Difficulty has been experiencel in olstaining sufficienti water on account of the small size of some of these canals, althongh there is usually sufficient in the river. The owners are generally men of small means and are not able to construct or maintain the works in the most economical manner, and the water supply is not ntilized as thoronghly as in the case of better equipped systems of supply.

Maricopa countr, in value and extent of irrgation, as well as in agricultural development, leads the others in the territory. It contains over one-lalf of the irrigated land and the greater nomber of the irrigating cunals. The amomet of land actually utilized in the census year was small in comparison with the area moder these canals, and formed an almost insignificant part of the vast extent of arable land which with water could be rendered valuable. The results attained have shown that the lands of this county, especially those within the Salt river valley, when properiy wet, can produce enormous crops, and when planted with trees and vines have the arequisites for the successful cultivation of many of the most valmable fruits, rivaling in this respect favored portions of Califomia. In some particulars the Salt river valley and the lands along the Gila are elamed to have advantages for fruit growing in that they are nearer the markets of the east, so that the green frit is not only hanled a less distance, but also is saved a day's jommey through the hot desert. It is asserted also that grapes and other fruits ripen earier in the season and can be put on the market far in advance of the Califormia prodacts.

The drincipal irrigated areas are in the vicinity of Phenix, the territorial capital, and also near Mesa and Tempe, extending along both sides of Salt river from below the Verde and the Salt River Indian reservation westerly at intervals to and even below Gila Bend. The water supply is derived mainly from Salt river, large catals heading also on the Gila itself below the month of the lirst mamed stream. Taken as a whole, the water supply is large, but thetuates greatly, having far less regularity than in the case of vivers farther to the north. Measmements of the amount flowing in the Verde and Salt have been made at varions points by the United States Geological Survey, the most important of these being shown by the following tables:

headworks of the Arizona caual, of which he has been engineer. The the direction of Samuel A. Davidson at the on the following page. On this diagram the discharge for 1888 is indiuts are shown by the table and diagram 1889 by the lighter continuous line, that for 1890 by the for 1888 is indicated by the lighter broken line, that for by the heavier broken line.

SALI' RIVER AT ARIZONA DAM, ARLZONA. (a)
(Drainage mrea, 12,260 square miles.)

DIAGRAM OH DAILY DISCHARGE OF SALT RIVER AT ARIZONA DAM, MARICOPA COUNTY, ARIZONA.

a Moasurementa of Salt river ati Arizoma dam were abruptly broken by the great flood of February, 1891. This fiood, which reached an estimated maximum
 aear the river lanks. The thow for two montis in 1801 (estimated for Tebruary) was:

Comparing the How of this river with that of many of the other rivers discussed in this report, the most notable difference is the low water during April, May, and June, months when the streams of the rest of the country reached their highest. The suddenness with which these floods come and go in the Gila and its tributaries is in striking contrast to the slow rise and fall of the snow fed rivers upon which most of the irrigation in the United states depends.

The location of most of the more important canals of this and adioining counties is shown on the accompanying map. Taking these along the Salt river in order downstream, the highest on the north side of the river is the Arizona, and below this the Grand, Maricopa, and Salt river valley, these 4 canals forming one system and covering lands north of and around Phenix. Farther downstream, below Phemix, are the Griffin, Farmers, St. John, and other ditches. On the south side of the river, and heading a short distance below the Arizona, is the Fightand, whose general direction is nearly south, covering lands rast of Mesa city. Below this come the Mesa, Utah, and Tempe emals, the latter irrigating lands immediately adjacent to the town of Tempe. Below this in order are the San Francisco, Frencl, and Broadway. Below the junction of the Salt and Gila are a number of important eamals mojected and partially constructed. The first of these is the Buckeye, on the north side of the river, heading near the junction of the channel of the Agua Fria. About 25 miles west of this stream the chamel of the Hassayampa enters from the north; the Gila swings to the sonth for about 20 miles and then again to the west, forming what is known as Gila Benc. Near the junction of the Hassayampa, on the right bank of the river, are the headworks of the Gila river and the Monarch canals, and about 8 miles below is the head of the Enterprise camal. On the left bank of the Gila river, halfway between Agma Fria and Hassayampa creeks, is the head of lumberg's canal, and below this the proposed St. Louis canal. About 8 miles below Hassayampa is the dam of the Gila Bend Reservoir and Irrgation Company, one of the largest projects in the territory, the canal for diverting the water coming out toward the east and south. Below this is the Lower Gila Bend or Palmer canal.

> MAP OF IRRIGATION CANALS IN THE GILA VALLEY, ARLZONA,

The figures near each canal line indicate the name of the canal, as shown by the following list:

1. Arizonat.
2. Higrhland
3. Mesa.
4. Itah.
5. Tempe.
6. Grand.
7. San Francisco.
8. Marieopa.
9. Salt River Valley.
10. French.
11. Broadway.
12. Griffin.
13. Farmers.
14. St. John.
15. Buokeje.
16. Rumbery's.
17. St. Louis.
18. Gila River.
19. Monarch.
20. Gila Thend Reservation and Irrigation Company.
21. Enterprise.
22. Lower Gila Bend.
$\begin{array}{ll}\text { 22. Lower Gila Bend. } & \text { 30. Sonth Mohawk. } \\ \text { 23. Sonth Gila. } & \text { 31. Antelope. }\end{array}$
23. Farmers.
24. Purdy.
25. Contreros,
26. Mohawk.
27. North Branch of Mohawr.
28. South Branch of Mohawk.
29. Antelope.

The Arizona canal diverts water from Salt river by means of a weir or dam over 900 feet long, located about a mile below the month of the Verde. The canal follows the bank of the river for a shont distance and then gradually nearly 1,000 second-feet, the grade being id feet bottom width is 36 feet, narrowing to 30 , and the estimated capacity gravel, the expense of construction being heavy. Work was begun in 1883 and water was the excavated in rock on total length of the main titch was 41 miles, and the cost, inchuding the dam, about was first used in. $\$ 880$. 000 . The
 at the mate of \$12.00 per acre, the ammal assessment being wis fer acre.

The Mesa cantid, heading on the sonth side of the river abont im miles below the Arizona dan, takes water ont in the vicinity of the town of Mesa. The total length of the main liteh is anmoximately 10 miles, the average
 year. The diversion dan is of hrush and stomeand has been rephem attar several foods. The works aroowned by a eorporation consisting of farmers, the property being hed in foo shares, ead of these entiting the hoder to
 tax is about si per aere. It is estimated that water was used under this canal at the rate of 1 seeomb-foot to 80 ares, athough the theoretical water duty is far higher. This, as well as the adjacent camas, is being rapidly oxtonded, bringing more land into ase for find and alfalia.
 and water oned in the following yen. It is owned by an association, coch share entiding the hoded to tom inches

The Buckeye canal dake water from the (aila about 4 miles below the junetion of the Salt, carying it ont on the now side. Tho river at this point as a rule llows the year round, but is stated to have been dry in extraondinary seasons. The total lengh of the main diteh in $2 x$ miles, the averuge width 12 feet, and the cost was estimated to be 8120,000 . Work was begun in 1885 and water used in 1siss. The ownemp is divided into

The dam of the diab Bend Reservoir and Hrigation Company is loonted about ts miles sonthwesterly from Phemix mad miles north of aila bend station. The and from this is being eonstrueted along the left bank of

 below the dan of the canal just mentionem and covers a marow strip of land on the sume side of the river. The
 was begra in 1884 and first ased in 1885 . Water is diverted by menns of a dam of hosth and stome replaced in
 propertional part of the water.

Momava wown wempies the extreme northwestern corne on the territory, aljoning Utah and Novala. An execedingly small anomit of cultivation was reporten, the total area in cereals being only 10 aeres of whent and

 away mure than haff the farming land, and apparently it was only a question of a short time before the rest would be destroyed. Thking the eounty as a whole thero is plenty of agricultural land, but tho dificulty of obtaining water stands in the way of development. Hay and grain for the mining camps have been hemght from Cabiforma,
 bomalary of this county and caries at all times a lage amome of water. Little, if any, of this ean be utilized on aceonit of the depth to which the river has cut below the axable hads. The diffenties of taking ont the water of this river aldea to be almost; insurmomathbe, althongh it is possible that by the expenditure of lage sums bank in the southeastern part of baliformia may be rechamed. A few measurements of tho actual quantity of

 Moxien. Agriculture is conlhed to the enstern end, nem Cochise county, where the devations range from 2, boo fort upward. The Santa Cruzand Sonota and their tributavies are the only soures of water supply, with the

 are taken out in suecession along the Sunta Gru\% from Calabasas down to Tueson. In the vicinity of Orittenden
is the Peunsylvania Ranch ditch, 7 miles long and 3 feet wide, receiving its water mainly from the springs of Sonoita creek, corn, alfalfa, and barley being irrigated. At the junction of the Sonoita with the Santa Oruz, about 8 miles north of Nogales, is a ditch 4 miles long and 3 feet wide, which is stated to have cost $\$ 800$. Among the ditches farther down on the Santa Cruz is one on the west side, taking water out in the vicinity of San Xavier, 4 miles in length and from 2 to 8 teet in width. The aunual cost of water is estimated to be 50 cents per acre. Farther north, in the vicinity of Tucson, is the Goodwin ditch, covering land on the east side of the river. It is 3.5 miles long, about 3 feet wide, and has cost $\$ 2,500$. Water is obtained from an open cut, penetrating the bed of the river to a depth of about 6 feet. The Davidson canal takes water from Rillito creek, a stream usually dry on the surface for about one-lalf of the year, the sandy chanuel, however, being saturated with water. Work Was begun about 1887 , and the cost before completion had already reached $\$ 25,000$. It is proposed to draw the water from a depth of 14 feet beneath the surface by means of a drain or aqueduct 4 feet 6 inches wide and 3 feet 6 inches high at the siles. This is to be so protected that floods will pass over it without injuring it. The object songht is to secure a permanent supply of water in order to guarantee the success of orchards and vineyards. The ordinary surfuce ditches are not always sure of receiving water, and while annual crops can be raised, vineyards and orchards lave been lost or injured by total failure of supply.

Pinal county includes a portion of the Gila valley above the mouth of Salt river, and in some respects possesses advantages for irrigation as great as those had by the lands in the vicinity of Phenix. The agricultural land now utilized is mainly in the vieinity of Florence, along the river below the point where it cuts through a trausverse range of hills or mountains. Above this point, along and below the month of San Pedro creek, is a second district in which irrigation is practiced, water being obtained from the creek at varions points above the town of Dudleyville and also from the river in the valley below that place. The cereal most cultivated is banley, next in importance to this is wheat. Large acreages have been devoted to alfalfa, and each year the area in orchards and vineyards steadily increases.

The quantity of water available has been measured for one year only. The ganging station on the Gila was located abont 15 miles above the town of Florence, at the Buttes, being thus above the head of canals and where, oring to the character of the chamel, the best results could be obtained. The following table gives the computed discharge. This was a year of prevailing low water, and there were few of the sharp, sudden floods so characteristic of the stream. One of these occurred in Angust, 1890, just previous to the abandonment of the station. (a)

GHAA RIVER AT BUTTES, ARIKONA.
(Drainago area 18,750 square miles.)

San Pelro creek was ganged for a time during the summer of 1890 , and discharges were computed, as shown in the table on the following page. As previously stated, the low water prevailed during this year and little irrigation was possible from the waters of this stream. Above the point of measurement there were at the time a number of ditches, madinly of from 1 to 2 miles in length, taking out water, so that, omitting the small floods which occasionally occurred and lasted for a few hours, the quantity measured may be considered perhaps as representing the seepage water. Although this stream has a large catchment area, the run-off, like that from adjacent basins, is exceedingly small.
(Trainage area 2,810 square miles.)

The necessity of water storage is perhaps as well appreciated in this comnty as in any part of the territory. During the census year there was umprecedented scarcity of water, due not only to a diminution of liver flow, but. to an increased diversion on the part of all the ditches, most of which had been gradually enlarged from time to time. Surveys have already demonstrated the feasibility of holding flood waters at various points, particularly: in the valley above the Buttes, 15 miles from Florence.

The principal ditches on the north side of the Gila river are Moore, McLellan, Stiles, aud Swiss; on the sonth: side, Brash, the Florence canal, Montezuma, Holland, Alamo Amarilla, Brady, Adamsville, White, and Walker. Neanly all of these are owned by individuals, the principal exceptions being the Florence canal and the Montezima and Alamo Amarilla ditches. The McLellan ditch heads about 10 miles above Florence, covering lands on the north side of the river. It is over 5 miles in length, 4 feet in width, and the cost was probably 85,000 . Work was begun in 1871 , and the ditch was finisher in 1872. Water is diverted by means of a dam composed of triangular cribs loaded down with rock and covered with brush and stone. There is generally an ample supply, but need of water is sometimes felt in June, July, and August. The tirst crop raised consists mainly of barley, wheat, beans, and early com, and the second crop of beans, corn, sweet potatoes, pumplins, watermelons, mut sugar canc. Water is usmally turned into the ditch in October and November, and used until the end of the spring floods. It is stated that the water in this part of the river has been diminishing for 6 years, owing probably to diversions from the San Pedro and from the Gila near Solomonsville and other towns. The Swiss ditch takes. water from the north side of Gila river in the vicinity of Florence. It is about 4 miles long, 10 feet wide, and probably cost about 82,500 . It was begun in 1872 and used in the sane year. The water supply at this point is often insufficient, generally on account of the fact that it is diverted at points above by other canals having prior rights. The need is felt most in May, Jume, and July, and sometimes in August. The principal arops irrigated are alfalfa and grain, the latter being cut sometimes for hay, and besides these, garden vegetables and fruit trees are watered regularly.

The Florence canal heads about 12 miles above the town of that mone and, coming ont of the sonth side of the river, it is continued beyond the town in a southwesterly and sontherly course nearly to the Sonthern Pacificrailroad. The total length is reported to be upward of 50 miles, the average width 20 feet, and the cost was placed at $\$ 400,000$. Work was begun in 1886 , and water was first used in 1888 . The diverting dam is of brush and is replaced each year. The canal is owned by a corporation which sells water rights at the rate of $\$ 8$ per acre above the reservoir and $\$ 12.50$ per acre below the reservoir. The annual assessment is $\$ 1.25$ per acre. A reservoir has. been constructed about 95 miles from the head of the canal, having an area of 1,800 acres and an estimated storage capacity of $6,000,000,000$ gallons. Besides this it is proposed to construct another reservoir at the Buttes, about 3 miles above the head gates.

Yavapai coundr, the largest in the United States (a), comprises about one-fourth the area of Arizona. Thecounty contains an exceedingly small proportion of irrigable land, since it includes that part of Arizona adjoining. Utah which contains the greater portion of the grand canyons of the Colorado. These stupendous gorges cut the great plateau to the depth of from 3,000 to 6,000 feet. The minor lateral eanyons, in which flow the tributaries of the Colorado, are also cut to a great depth, which decreases toward their head waters. Thus the water of the northern part of the territory, though large in amount, is wholly useless, lymg as it does hundreds and thousauds of feet below the level of the arable lands. It is only toward the sonthern portion of the combty, where the great platean begins to break off and the valleys are less deep and narrow, that agriculture has been seriously attempted. Along the line of the Atlantic and Pacific railoond, which crosses the county from east to west, at an elevation of from 5,000 to 7,000 feet, some crops, especially for forage, are raised without irrigation. For example, at Flagstaff, at an elevation of about 7,000 fect, corn, potatoes, and vegetables, as well as a little wheat, oats, and barley are thus cultivated, the cereals being generally cut for forage purposes. The same is true of Prescott, although near that place irrigation has been employed wherever practicable. On the head waters of the Agua Fria, at an elevation of about 4,500 feet, there is also a little dry farming.
a Since 1890 Xapapai county has been divided, the uorlhern portion, with Flagstafi as the county seat, heing set off under the namo of Coconino.

The principal bodies of irrigated lauds are along the Verde river and its tribntaries, Oak, Clear, Beaver, and other creeks, both above and below Camp Verde, where a number of small ditches have been built by farm owners. On Walnut creek, which heads west of Prescott and flows northerly into Big Chino valley, and on Granite creek to the east, all the available waters are utilized and the irrigators are discussing the feasibility of water storage. On the head waters of Hassayampa niver, a short distance southerly from Prescott, two dams have been built, mainly for the pturpose of supplying water for hydraulic mining. The upper of these, that at Oro Fino, was built about 1885, the height being about 20 feet. It is located near the mouth of the upper canyon, below which is the tarming land of Walnut Grove valley. This is abont 7 miles in length and from 1 to 3 miles in width. At the foot of this valley the Walnut Grove Water Storage Company built the dam the destruction of which by a great flood in February, 1890, caused large loss of life and property. This dam was 420 feet long on top, 138 feet wide at bottom, 15 feet wide at top, and 110 feet in greatest height. It was plamed to use the water both for placer mining and purposes of stock raising on the plains of the valleys below.

Yuma countr, occupying the southwestern comer of the territory, comprises lands having the lowest altitude and the hottest climate of Arizona. In these respects it is surpassed by the desert regions of San Bernardino and San Diego connties, Galifornia, portions of which are far below sea level. This area possesses the advantage of having a fair water supply from the Gila, which flows westerly through it into the Colorado, which forms the boundary between Arizona and California. Along the Gila are several places where water can be brought out by means of cauals, and the lands thos irrigated are capable of producing semitropical firuits. The Colorado itself, as previously stated, probably can not be used to any great extent for irrigation in this territory, owing to the alnost insurmountable difficulties of diverting tater. Small bodies of land are being brought under inrigation by means of pumps, raising water to lauds upon or above the flood plains. This method of obtaining the water supply, although expensive, can probably be made profitable, owing to the value of the fruits prodnced.

Along the Gila the principal canals projected or constructed are, on the north side, the Farmers, Pardy, and Molnawk, and on the sonth side the South Gila, Contreres, South Mohawk or Saunders, and Antelope, the relative location of these being shown on the map. (a) The Sanuders is probably the oldest canal along this part of the river, having been used first about 1868, but not completed until 1884 . It is 10 miles loing, 8 feet wide, and has cost 825,000 . It is owned by a company which uses the water upon its own land. The annual cost for water is about 50 cents per acre. The principal crops are alfalfa and barley, for the former of which almost constant irrigation is eonsilered neeessary.

[^2]
[^0]: a Renort on the lamils of the arid region of the Tnited States, with a more detailed account of the lauds of Utalh, by. J. W. Porrell. Second edition,
 Washington, 1879, page 8.

[^1]: a tome of these aro shown diagrammatically in his report umon irrigation and water storage, published as Houso Fixecutive Document No. 287 , Fifty-first Congress, second session:

[^2]: work along the banks.

